9 research outputs found

    Gap-free 16-year (2005-2020) sub-diurnal surface meteorological observations across Florida

    Full text link
    The rather unique sub-tropical, flat, peninsular region of Florida is subject to a unique climate with extreme weather events across the year that impacts agriculture, public health, and management of natural resources. Meteorological data at high temporal resolutions especially in the tropical latitudes are essential to understand diurnal and semi-diurnal variations of climate, which are considered to be the fundamental modes of climate variations of our Earth system. However, many meteorological datasets contain gaps that limit their use for validation of models and further detailed observational analysis. The objective of this paper is to apply a set of data gap filling strategies to develop a gap-free dataset with 15-minute observations for the sub-tropical region of Florida. Using data from the Florida Automated Weather Network (FAWN), methods of linear interpolation, trend continuation, reference to external sources, and nearest station substitution were applied to fill in the data gaps depending on the extent of the gap. The outcome of this study provides continuous, publicly accessible surface meteorological observations for 30 FAWN stations at 15-minute intervals for the years 2005-2020.Comment: 16 pages, 8 figures, 3 table

    Microplastic interactions with north atlantic mesopelagic fish

    No full text
    Microplastics in the marine environment are well documented, and interactions with marine biota have been described worldwide. However, interactions with vertically migrating fish are poorly understood. The diel vertical migration of mesopelagic fish represents one, if not the largest, vertical migration of biomass on the planet, and is thus an important link between the euphotic zone, transporting carbon and other nutrients to global deep sea communities. Knowledge of how mesopelagic fish interact and distribute plastic as a marine contaminant is required as these populations have been identified as a potential global industrial fishery for fishmeal production. Ingestion of microplastic by mesopelagic fish in the Northeast Atlantic was studied. Approximately 11% of the 761 fish examined had microplastics present in their digestive tracts. No clear difference in ingestion frequency was identified between species, location, migration behaviour, or time of capture. While ingesting microplastic may not negatively impact individual mesopelagic fish, the movement of mesopelagic fish from the euphotic zone to deeper waters could mediate transfer of microplastics to otherwise unexposed species and regions of the world's oceans

    Microplastics in arctic polar waters: the first reported values of particles in surface and sub-surface samples

    No full text
    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment

    Microplastics in arctic polar waters: the first reported values of particles in surface and sub-surface samples

    No full text
    Plastic, as a form of marine litter, is found in varying quantities and sizes around the globe from surface waters to deep-sea sediments. Identifying patterns of microplastic distribution will benefit an understanding of the scale of their potential effect on the environment and organisms. As sea ice extent is reducing in the Arctic, heightened shipping and fishing activity may increase marine pollution in the area. Microplastics may enter the region following ocean transport and local input, although baseline contamination measurements are still required. Here we present the first study of microplastics in Arctic waters, south and southwest of Svalbard, Norway. Microplastics were found in surface (top 16 cm) and sub-surface (6 m depth) samples using two independent techniques. Origins and pathways bringing microplastic to the Arctic remain unclear. Particle composition (95% fibres) suggests they may either result from the breakdown of larger items (transported over large distances by prevailing currents, or derived from local vessel activity), or input in sewage and wastewater from coastal areas. Concurrent observations of high zooplankton abundance suggest a high probability for marine biota to encounter microplastics and a potential for trophic interactions. Further research is required to understand the effects of microplastic-biota interaction within this productive environment

    Microplastic interactions with north atlantic mesopelagic fish

    No full text
    Microplastics in the marine environment are well documented, and interactions with marine biota have been described worldwide. However, interactions with vertically migrating fish are poorly understood. The diel vertical migration of mesopelagic fish represents one, if not the largest, vertical migration of biomass on the planet, and is thus an important link between the euphotic zone, transporting carbon and other nutrients to global deep sea communities. Knowledge of how mesopelagic fish interact and distribute plastic as a marine contaminant is required as these populations have been identified as a potential global industrial fishery for fishmeal production. Ingestion of microplastic by mesopelagic fish in the Northeast Atlantic was studied. Approximately 11% of the 761 fish examined had microplastics present in their digestive tracts. No clear difference in ingestion frequency was identified between species, location, migration behaviour, or time of capture. While ingesting microplastic may not negatively impact individual mesopelagic fish, the movement of mesopelagic fish from the euphotic zone to deeper waters could mediate transfer of microplastics to otherwise unexposed species and regions of the world\u27s oceans
    corecore