87 research outputs found

    Analytical Solution for the Deformation of a Cylinder under Tidal Gravitational Forces

    Get PDF
    Quite a few future high precision space missions for testing Special and General Relativity will use optical resonators which are used for laser frequency stabilization. These devices are used for carrying out tests of the isotropy of light (Michelson-Morley experiment) and of the universality of the gravitational redshift. As the resonator frequency not only depends on the speed of light but also on the resonator length, the quality of these measurements is very sensitive to elastic deformations of the optical resonator itself. As a consequence, a detailed knowledge about the deformations of the cavity is necessary. Therefore in this article we investigate the modeling of optical resonators in a space environment. Usually for simulation issues the Finite Element Method (FEM) is applied in order to investigate the influence of disturbances on the resonator measurements. However, for a careful control of the numerical quality of FEM simulations a comparison with an analytical solution of a simplified resonator model is beneficial. In this article we present an analytical solution for the problem of an elastic, isotropic, homogeneous free-flying cylinder in space under the influence of a tidal gravitational force. The solution is gained by solving the linear equations of elasticity for special boundary conditions. The applicability of using FEM codes for these simulations shall be verified through the comparison of the analytical solution with the results gained within the FEM code.Comment: 23 pages, 3 figure

    GEP100/Arf6 Is Required for Epidermal Growth Factor-Induced ERK/Rac1 Signaling and Cell Migration in Human Hepatoma HepG2 Cells

    Get PDF
    BACKGROUND: Epidermal growth factor (EGF) signaling is implicated in the invasion and metastasis of hepatoma cells. However, the signaling pathways for EGF-induced motility of hepatoma cells remain undefined. METHODOLOGY/PRINCIPAL FINDINGS: We found that EGF dose-dependently stimulated the migration of human hepatoma cells HepG2, with the maximal effect at 10 ng/mL. Additionally, EGF increased Arf6 activity, and ectopic expression of Arf6 T27N, a dominant negative Arf6 mutant, largely abolish EGF-induced cell migration. Blocking GEP100 with GEP100 siRNA or GEP100-△PH, a pleckstrin homology (PH) domain deletion mutant of GEP100, blocked EGF-induced Arf6 activity and cell migration. EGF also increased ERK and Rac1 activity. Ectopic expression GEP100 siRNA, GEP100-△PH, or Arf6-T27N suppressed EGF-induced ERK and Rac1 activity. Furthermore, blocking ERK signaling with its inhibitor U0126 remarkably inhibited both EGF-induced Rac1 activation as well as cell migration, and ectopic expression of inactive mutant form of Rac1 (Rac1-T17N) also largely abolished EGF-induced cell migration. CONCLUSIONS/SIGNIFICANCE: Taken together, this study highlights the function of the PH domain of GEP100 and its regulated Arf6/ERK/Rac1 signaling cascade in EGF-induced hepatoma cell migration. These findings could provide a rationale for designing new therapy based on inhibition of hepatoma metastasis

    Polymorphism in COX-2 modifies the inverse association between Helicobacter pylori seropositivity and esophageal squamous cell carcinoma risk in Taiwan: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overexpression of Cyclooxygenase-2 (COX-2) was observed in many types of cancers, including esophageal squamous cell carcinoma (ESCC). One functional SNP, COX-2 -1195G/A, has been reported to mediate susceptibility of ESCC in Chinese populations. In our previous study, the presence of <it>Helicobacter pylori </it>(<it>H. pylori</it>) was found to play a protective role in development of ESCC. The interaction of COX-2 and <it>H. pylori </it>in gastric cancer was well investigated. However, literature on their interaction in ESCC risk is scarce. The purpose of this study was to evaluate the association and interaction between COX-2 single nucleotide polymorphism (SNP), <it>H. pylori </it>infection and the risk of developing ESCC.</p> <p>Methods</p> <p>One hundred and eighty patients with ESCC and 194 controls were enrolled in this study. Personal data regarding related risk factors, including alcohol consumption, smoking habits and betel quid chewing, were collected via questionnaire. Genotypes of the COX-2 -1195 polymorphism were determined by PCR-based restriction fragment length polymorphism. <it>H. pylori </it>seropositivity was defined by immunochromatographic screening test. Data was analyzed by chi-squared tests and polytomous logistics regression.</p> <p>Results</p> <p>In analysis adjusting for the covariates and confounders, <it>H. pylori </it>seropositivity was found to be inversely association with the ESCC development (adjusted OR: 0.5, 95% CI: 0.3 – 0.9). COX-2 -1195 AA homozygous was associated with an increased risk of contracting ESCC in comparison with the non-AA group, especially among patients with <it>H. pylori </it>seronegative (adjusted OR ratio: 2.9, 95% CI: 1.2 – 7.3). The effect was strengthened among patients with lower third ESCC (adjusted OR ratio: 6.9, 95% CI 2.1 – 22.5). Besides, <it>H. pylori </it>seropositivity conveyed a notably inverse effect among patients with COX-2 AA polymorphism (AOR ratio: 0.3, 95% CI: 0.1 – 0.9), and the effect was observed to be enhanced for the lower third ESCC patients (AOR ratio: 0.09, 95% CI: 0.02 – 0.47, <it>p </it>for multiplicative interaction 0.008)</p> <p>Conclusion</p> <p><it>H. pylori </it>seropositivity is inversely associated with the risk of ESCC in Taiwan, and COX-2 -1195 polymorphism plays a role in modifying the influence between <it>H. pylori </it>and ESCC, especially in lower third esophagus.</p

    A Comprehensive Microarray-Based DNA Methylation Study of 367 Hematological Neoplasms

    Get PDF
    Background: Alterations in the DNA methylation pattern are a hallmark of leukemias and lymphomas. However, most epigenetic studies in hematologic neoplasms (HNs) have focused either on the analysis of few candidate genes or many genes and few HN entities, and comprehensive studies are required. Methodology/Principal Findings: Here, we report for the first time a microarray-based DNA methylation study of 767 genes in 367 HNs diagnosed with 16 of the most representative B-cell (n = 203), T-cell (n = 30), and myeloid (n = 134) neoplasias, as well as 37 samples from different cell types of the hematopoietic system. Using appropriate controls of B-, T-, or myeloid cellular origin, we identified a total of 220 genes hypermethylated in at least one HN entity. In general, promoter hypermethylation was more frequent in lymphoid malignancies than in myeloid malignancies, being germinal center mature B-cell lymphomas as well as B and T precursor lymphoid neoplasias those entities with highest frequency of gene-associated DNA hypermethylation. We also observed a significant correlation between the number of hypermethylated and hypomethylated genes in several mature B-cell neoplasias, but not in precursor B- and T-cell leukemias. Most of the genes becoming hypermethylated contained promoters with high CpG content, and a significant fraction of them are targets of the polycomb repressor complex. Interestingly, T-cell prolymphocytic leukemias show low levels of DNA hypermethylation and a comparatively large number of hypomethylated genes, many of them showing an increased gene expression. Conclusions/Significance: We have characterized the DNA methylation profile of a wide range of different HNs entities. As well as identifying genes showing aberrant DNA methylation in certain HN subtypes, we also detected six genes DBC1, DIO3, FZD9, HS3ST2, MOS, and MYOD1 that were significantly hypermethylated in B-cell, T-cell, and myeloid malignancies. These might therefore play an important role in the development of different HNs

    Zur Bestimmung von Cadmium in Zinkkonzentraten und metallischem Zink

    No full text

    Störungen bei der Ermittlung von Cadmium mittels innerer Elektrolyse

    No full text

    Insufficient future liver remnant and preoperative cholangitis predict perioperative outcome in perihilar cholangiocarcinoma

    No full text
    Background: Major liver resection has evolved as the mainstay of treatment for patients with perihilar cholangiocarcinoma (pCCA). Here we assessed the suitability of preoperative future liver remnant (FLR) measurement to predict perioperative complications, since surgical morbidity and mortality are high compared to other malignancies.Methods: Between 2011 and 2016, 91 patients with pCCA underwent surgery in curative intent at our institution. The associations of surgical complications with FLR and clinico-pathological characteristics were assessed using logistic regression analyses. Different methods of FLR assessment, the calculatedFLR (cFLR; ratio of FLR to total liver volume), standardized FLR (sFLR; ratio of FLR to liver volume estimated by body surface area) and FLR to bodyweight ratio (FLR/BW) were tested for validity.Results: Multivariable analysis identified preoperative cholangitis (Exp(B) = 0.236; p = 0.030) as the single significant predictor of postoperative mortality and cFLR (Exp(B) = 0.009, p = 0.004) as the single significant predictor of major postoperative morbidity (Clavien-Dindo 3b). Based on these findings we designed a futility criterion (cFLR<40% OR preoperative cholangitis) predicting in-house mortality.Conclusions: In patients with pCCA, the preoperative FLR<40% as well as preoperative cholangitis are two risk factors to independently predict perioperative morbidity and mortality. The cFLR should be the preferred method of liver volumetry
    corecore