98 research outputs found

    Impact of lower limb movement on the hemodynamics of femoropopliteal arteries: A computational study

    Get PDF
    Femoropopliteal arteries (FPAs) are subjected to a wide range of deformations, mainly determined by leg movement. FPAs are often affected by atherosclerotic plaque development, presumably influenced by the biomechanics of surrounding tissues. Although abnormal hemodynamics in FPAs appears to be an important factor in driving plaque development, to date it has been investigated in few studies, in which the leg was modeled in either fixed straight or bent configuration. Hence, the current work investigates the impact of leg movement on FPA hemodynamics. An idealized model of FPA was created to perform moving-boundary computational fluid dynamics analyses. By mimicking hip rotation, knee flexion and complete movement of walking, the hemodynamics was compared between moving- and fixed-boundary models. Moreover, additional features affecting the hemodynamics (e.g. flow-rate curve amplitude, walking speed) were examined. Significant hemodynamic differences were found between the moving- and fixed-boundary models, with the leg movement inducing higher time-averaged wall shear stress (TAWSS) (up to 66%). The flow-rate amplitude and walking period were the most influential parameters (differences in TAWSS up to 68% and 74%, respectively). In conclusion, this numerical approach highlighted the importance of considering leg movement to investigate FPA hemodynamics, and it could be employed in future patient-specific analyses

    Utilizing numerical simulations to prevent stent graft kinking during thoracic endovascular aortic repair

    Get PDF
    Numerical simulations of thoracic endovascular aortic repair (TEVAR) may be implemented in the preoperative workflow if credible and reliable. We present the application of a TEVAR simulation methodology to an 82-year-old woman with a penetrating atherosclerotic ulcer in the left hemiarch, that underwent a left common carotid artery to left subclavian artery bypass and consequent TEVAR in zone 2. During the intervention, kinking of the distal thoracic stent graft occurred and the simulation was able to reproduce this event. This report highlights the potential and reliability of TEVAR simulations to predict perioperative adverse events and short-term postoperative technical results. (J Vasc Surg Cases Innov Tech 2023;9:101269.

    Colorectal cancer residual disease at maximal response to EGFR blockade displays a druggable Paneth cell–like phenotype

    Get PDF
    Blockade of epidermal growth factor receptor (EGFR) causes tumor regression in some patients with metastatic colorectal cancer (mCRC). However, residual disease reservoirs typically remain even after maximal response to therapy, leading to relapse. Using patient-derived xenografts (PDXs), we observed that mCRC cells surviving EGFR inhibition exhibited gene expression patterns similar to those of a quiescent subpopulation of normal intestinal secretory precursors with Paneth cell characteristics. Compared with untreated tumors, these pseudodifferentiated tumor remnants had reduced expression of genes encoding EGFR-activating ligands, enhanced activity of human epidermal growth factor receptor 2 (HER2) and HER3, and persistent signaling along the phosphatidylinositol 3-kinase (PI3K) pathway. Clinically, properties of residual disease cells from the PDX models were detected in lingering tumors of responsive patients and in tumors of individuals who had experienced early recurrence. Mechanistically, residual tumor reprogramming after EGFR neutralization was mediated by inactivation of Yes-associated protein (YAP), a master regulator of intestinal epithelium recovery from injury. In preclinical trials, Pan-HER antibodies minimized residual disease, blunted PI3K signaling, and induced long-term tumor control after treatment discontinuation. We found that tolerance to EGFR inhibition is characterized by inactivation of an intrinsic lineage program that drives both regenerative signaling during intestinal repair and EGFR-dependent tumorigenesis. Thus, our results shed light on CRC lineage plasticity as an adaptive escape mechanism from EGFR-targeted therapy and suggest opportunities to preemptively target residual disease

    The syntax of ‘-cā’ (*-kwe) in Ahunavaiti Gāthā

    Get PDF
    This paper seeks to provide a full description of the syntactic behaviour of the enclitic co-ordinate conjunction -cā in the earliest stage of the Avestan language. By studying the occurrences of the particle in Ahunavaiti Gāthā, a distributive analysis is provided together with an interpretative hypothesis of its distributive dynamics. Two syntactic levels, phrase and sentence, are taken into consideration. Finally, a syntactic domain-based variation is argued and two clitic functional variants are identified as synchronically operating conjunction strategies

    Synthetic Glycolipids as Molecular Vaccine Adjuvants: Mechanism of Action in Human Cells and In Vivo Activity

    Get PDF
    Modern adjuvants for vaccine formulations are immunostimulating agents whose action is based on the activation of pattern recognition receptors (PRRs) by well-defined ligands to boost innate and adaptive immune responses. Monophosphoryl lipid A (MPLA), a detoxified analogue of lipid A, is a clinically approved adjuvant that stimulates toll-like receptor 4 (TLR4). The synthesis of MPLA poses manufacturing and quality assessment challenges. Bridging this gap, we report here the development and preclinical testing of chemically simplified TLR4 agonists that could sustainably be produced in high purity and on a large scale. Underpinned by computational and biological experiments, we show that synthetic monosaccharide-based molecules (FP compounds) bind to the TLR4/MD-2 dimer with submicromolar affinities stabilizing the active receptor conformation. This results in the activation of MyD88- and TRIF-dependent TLR4 signaling and the NLRP3 inflammasome. FP compounds lack in vivo toxicity and exhibit adjuvant activity by stimulating antibody responses with a potency comparable to MPLA

    YangZheng XiaoJi exerts anti-tumour growth effects by antagonising the effects of HGF and its receptor, cMET, in human lung cancer cells

    Get PDF
    BACKGROUND: Hepatocyte growth factor (HGF) is a cytokine that has a profound effect on cancer cells by stimulating migration and invasion and acting as an angiogenic factor. In lung cancer, the factor also plays a pivotal role and is linked to a poor outcome in patients. In particular, HGF is known to work in combination with EGF on lung cancer cells. In the present study, we investigated the effect of a traditional Chinese medicine reported in cancer therapies, namely YangZheng XiaoJi (YZXJ) on lung cancer and on HGF mediated migration and invasion of lung cancer cells. METHODS: Human lung cancer cells, SKMES1 and A549 were used in the study. An extract from the medicine was used. Cell migration was investigated using the EVOS and by ECIS. Cell–matrix adhesion and in vitro invasion were assessed. In vivo growth of lung cancer was tested using an in vivo xenograft tumour model and activation of the HGF receptor in lung tumours by an immunofluorescence method. RESULTS: Both lung cancer cells increased their migration in response to HGF and responded to YZXJ by reducing their speed of migration. YZXJ markedly reduced the migration and in vitro invasiveness induced by HGF. It worked synergistically with PHA665752 and SU11274, HGF receptor inhibitors on the lung cancer cells both on HGF receptor activation and on cell functions. A combination of HGF and EGF resulted in a greater increase in cell migration, which was similarly inhibited by YZXJ, and in combination with the HGF receptor and EGF receptor inhibitors. In vivo, YZXJ reduced the rate of tumour growth and potentiated the effects of PHA665752 on tumour growth. It was further revealed that YZXJ significantly reduced the degree of phosphorylation of the HGF receptor in lung tumours. CONCLUSION: YZXJ has a significant role in reducing the migration, invasion and in vivo tumour growth of lung cancer and acts to inhibit the migratory and invasive effects induced by HGF and indeed by HGF/EGF. This effect is likely attributed to the inhibition of the HGF receptor activation. These results indicate that YZXJ has a therapeutic role in lung cancer and that combined strategy with methods to block HGF and EGF should be considered. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12967-015-0639-1) contains supplementary material, which is available to authorized users
    corecore