19 research outputs found
Processing of insect retrotransposons by self-cleaving ribozymes
We show that several classes of insect non-LTR retrotransposons harbor self-cleaving ribozymes of the HDV family at their 5′ termini. In Drosophila the R2 ribozymes exhibit highly differential in vivo expression and robust in vitro activity, modulated by an upstream sequence originating from the insertion site. Our data suggest a role for self-cleaving ribozymes in co-transcriptional processing of retrotransposons with implications for downstream events, including translation and retrotransposition
Recommended from our members
Regulation of mRNA translation by a photoriboswitch.
Optogenetic tools have revolutionized the study of receptor-mediated processes, but such tools are lacking for RNA-controlled systems. In particular, light-activated regulatory RNAs are needed for spatiotemporal control of gene expression. To fill this gap, we used in vitro selection to isolate a novel riboswitch that selectively binds the trans isoform of a stiff-stilbene (amino-tSS)-a rapidly and reversibly photoisomerizing small molecule. Structural probing revealed that the RNA binds amino-tSS about 100-times stronger than the cis photoisoform (amino-cSS). In vitro and in vivo functional analysis showed that the riboswitch, termed Werewolf-1 (Were-1), inhibits translation of a downstream open reading frame when bound to amino-tSS. Photoisomerization of the ligand with a sub-millisecond pulse of light induced the protein expression. In contrast, amino-cSS supported protein expression, which was inhibited upon photoisomerization to amino-tSS. Reversible photoregulation of gene expression using a genetically encoded RNA will likely facilitate high-resolution spatiotemporal analysis of complex RNA processes
Recommended from our members
Discovering human RNA aptamers by structure-based bioinformatics and genome-based in vitro selection.
The ubiquitous hammerhead ribozyme.
The hammerhead ribozyme is a small catalytic RNA motif capable of endonucleolytic (self-) cleavage. It is composed of a catalytic core of conserved nucleotides flanked by three helices, two of which form essential tertiary interactions for fast self-scission under physiological conditions. Originally discovered in subviral plant pathogens, its presence in several eukaryotic genomes has been reported since. More recently, this catalytic RNA motif has been shown to reside in a large number of genomes. We review the different approaches in discovering these new hammerhead ribozyme sequences and discuss possible biological functions of the genomic motifs.Peer reviewe