70 research outputs found
Modelling study, efficiency analysis and optimisation of large-scale adiabatic compressed air energy storage systems with low-temperature thermal storage
The key feature of Adiabatic Compressed Air Energy Storage (A-CAES) is the reuse of the heat generated from the air compression process at the stage of air expansion. This increases the complexity of the whole system since the heat exchange and thermal storage units must have the capacities and performance to match the air compression/expansion units. Thus it raises a strong demand in the whole system modelling and simulation tool for A-CAES system optimisation. The paper presents a new whole system mathematical model for A-CAES with simulation implementation and the model is developed with consideration of lowing capital cost of the system. The paper then focuses on the study of system efficiency improvement strategies via parametric analysis and system structure optimisation. The paper investigates how the system efficiency is affected by the system component performance and parameters. From the study, the key parameters are identified, which give dominant influences in improving the system efficiency. The study is extended onto optimal system configuration and the recommendations are made for achieving higher efficiency, which provides a useful guidance for A-CAES system design
Reconstruction and Functional Annotation of P311 Protein–Protein Interaction Network Reveals Its New Functions
P311 is a highly conserved multifunctional protein. However, it does not belong to any established family of proteins, and its biological function has not been entirely determined. This study aims to reveal the unknown molecular and cellular function of P311. OCG (Overlapping Cluster Generator) is a clustering method used to partition a protein-protein network into overlapping clusters. Multifunctional proteins are at the intersection of relevant clusters. DAVID is an analytic tool used to extract biological meaning from a large protein list. Here we presented OD2 (OCG + DAVID + 2 human PPI datasets), a novel strategy to increase the likelihood to identify biological functions most pertinent to the multifunctional proteins. The principle of OD2 is that OCG prepares the protein lists from multifunctional protein relevant overlapping clusters, for a functional enrichment analysis by DAVID, and the similar functional enrichments, which occurs simultaneously when analyzing two human PPI datasets, are supposed to be the predicted functions. By applying OD2 to two reconstructed human PPI datasets, we supposed the function of the P311 in inflammatory responses, cell proliferation and coagulation, which were confirmed by the following biological experiments. Collectively, our study preliminarily found that P311 could play a role in inflammatory responses, cell proliferation and coagulation. Further studies are required to validate and elucidate the underlying mechanism
Design and preparation of a novel colon-targeted tablet of hydrocortisone
ABSTRACT The objective of this research was to design a new colon-targeted drug delivery system based on chitosan. The properties of the films were studied to obtain useful information about the possible applications of composite films. The composite films were used in a bilayer system to investigate their feasibility as coating materials. Tensile strength, swelling degree, solubility, biodegradation degree, Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Scanning Electron Microscope (SEM) investigations showed that the composite film was formed when chitosan and gelatin were reacted jointly. The results showed that a 6:4 blend ratio was the optimal chitosan/gelatin blend ratio. In vitro drug release results indicated that the Eudragit- and chitosan/gelatin-bilayer coating system prevented drug release in simulated intestinal fluid (SIF) and simulated gastric fluid (SGF). However, the drug release from a bilayer-coated tablet in SCF increased over time, and the drug was almost completely released after 24h. Overall, colon-targeted drug delivery was achieved by using a chitosan/gelatin complex film and a multilayer coating system
Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite
As China's first X-ray astronomical satellite, the Hard X-ray Modulation
Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15,
2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy
satellite with the capability of all-sky monitoring in 0.2-3 MeV. It was
designed to perform pointing, scanning and gamma-ray burst (GRB) observations
and, based on the Direct Demodulation Method (DDM), the image of the scanned
sky region can be reconstructed. Here we give an overview of the mission and
its progresses, including payload, core sciences, ground calibration/facility,
ground segment, data archive, software, in-orbit performance, calibration,
background model, observations and some preliminary results.Comment: 29 pages, 40 figures, 6 tables, to appear in Sci. China-Phys. Mech.
Astron. arXiv admin note: text overlap with arXiv:1910.0443
Insight-HXMT observations of Swift J0243.6+6124 during its 2017-2018 outburst
The recently discovered neutron star transient Swift J0243.6+6124 has been
monitored by {\it the Hard X-ray Modulation Telescope} ({\it Insight-\rm HXMT).
Based on the obtained data, we investigate the broadband spectrum of the source
throughout the outburst. We estimate the broadband flux of the source and
search for possible cyclotron line in the broadband spectrum. No evidence of
line-like features is, however, found up to . In the absence of
any cyclotron line in its energy spectrum, we estimate the magnetic field of
the source based on the observed spin evolution of the neutron star by applying
two accretion torque models. In both cases, we get consistent results with
, and peak luminosity of which makes the source the first Galactic ultraluminous
X-ray source hosting a neutron star.Comment: publishe
- …