2,395 research outputs found

    A Novel Object Segmentation Method for Silhouette Tracker in Video Surveillance Application

    Get PDF
    In recent years, surveillance cameras are deployed almost everywhere. More and more video analytics features have been developed and incorporated with video surveillance system for conducting intelligence tasks, such as motion detection, human identification, etc. One typical requirement is to track suspicious humans or vehicles in the cameras' live or recorded footages, and over the years researchers have proposed different tracking methods, such as point tracking, kernel tracking and silhouette tracking to support this requirement. In particular, silhouette tracker has received considerable attention because it works well for objects with a large variety of shape, provided that reasonably good object masks or contours are initialized properly for the silhouette tracker. A properly initialized object mask and contour, however, cannot be obtained easily. On one hand, a simple bounding box contains too much irrelevant background objects, while a manually specified mask could provide accurate silhouette but this also requires lots of interactive which greatly limits its practicality. In this paper, we present a novel block based object mask segmentation method for silhouette tracker initialization. Essentially, the proposed method re-uses the motion information extracted during the video encoding phase, which provides approximated object masks for silhouette tracker. Experimental results confirm that such a block-based object masks is sufficient for a robust silhouette tracker to reliably track moving objects. © 2014 IEEE.published_or_final_versio

    Microstructure and properties of a deformation-processed Cu-Cr-Ag in situ composite by directional solidification

    Get PDF
    Cu-7Cr-0.07Ag alloys were prepared by casting and directional solidification, from which deformation-processed in situ composites were prepared by thermo-mechanical processing. The microstructure, mechanical properties, and electrical properties were investigated using optical microscopy, scanning electronic microscopy, tensile testing, and a micro-ohmmeter. The second-phase Cr grains of the directional solidification Cu-7Cr-0.07Ag in situ composite were parallel to the drawing direction and were finer, which led to a higher tensile strength and a better combination of properties

    On dynamic network entropy in cancer

    Get PDF
    The cellular phenotype is described by a complex network of molecular interactions. Elucidating network properties that distinguish disease from the healthy cellular state is therefore of critical importance for gaining systems-level insights into disease mechanisms and ultimately for developing improved therapies. By integrating gene expression data with a protein interaction network to induce a stochastic dynamics on the network, we here demonstrate that cancer cells are characterised by an increase in the dynamic network entropy, compared to cells of normal physiology. Using a fundamental relation between the macroscopic resilience of a dynamical system and the uncertainty (entropy) in the underlying microscopic processes, we argue that cancer cells will be more robust to random gene perturbations. In addition, we formally demonstrate that gene expression differences between normal and cancer tissue are anticorrelated with local dynamic entropy changes, thus providing a systemic link between gene expression changes at the nodes and their local network dynamics. In particular, we also find that genes which drive cell-proliferation in cancer cells and which often encode oncogenes are associated with reductions in the dynamic network entropy. In summary, our results support the view that the observed increased robustness of cancer cells to perturbation and therapy may be due to an increase in the dynamic network entropy that allows cells to adapt to the new cellular stresses. Conversely, genes that exhibit local flux entropy decreases in cancer may render cancer cells more susceptible to targeted intervention and may therefore represent promising drug targets.Comment: 10 pages, 3 figures, 4 tables. Submitte

    Microbial fuel cells: a green and alternative source for bioenergy production

    Get PDF
    Microbial fuel cell (MFC) represents one of the green technologies for the production of bioenergy. MFCs using microalgae produce bioenergy by converting solar energy into electrical energy as a function of metabolic and anabolic pathways of the cells. In the MFCs with bacteria, bioenergy is generated as a result of the organic substrate oxidation. MFCs have received high attention from researchers in the last years due to the simplicity of the process, the absence in toxic by-products, and low requirements for the algae growth. Many studies have been conducted on MFC and investigated the factors affecting the MFC performance. In the current chapter, the performance of MFC in producing bioenergy as well as the factors which influence the efficacy of MFCs is discussed. It appears that the main factors affecting MFC’s performance include bacterial and algae species, pH, temperature, salinity, substrate, mechanism of electron transfer in an anodic chamber, electrodes materials, surface area, and electron acceptor in a cathodic chamber. These factors are becoming more influential and might lead to overproduction of bioenergy when they are optimized using response surface methodology (RSM)

    Population seroprevalence of antibody to influenza A(H7N9) virus, Guangzhou, China

    Get PDF
    BACKGROUND: Since the identification in early 2013 of severe disease caused by influenza A(H7N9) virus infection, there have been few attempts to characterize the full severity profile of human infections. Our objective was to estimate the number and severity of H7N9 infections in Guangzhou, using a serological study. METHODS: We collected residual sera from patients of all ages admitted to a hospital in the city of Guangzhou in southern China in 2013 and 2014. We screened the sera using a haemagglutination inhibition assay against a pseudovirus containing the H7 and N9 of A/Anhui/1/2013(H7N9), and samples with a screening titer ≥10 were further tested by standard hemagglutination-inhibition and virus neutralization assays for influenza A(H7N9). We used a statistical model to interpret the information on antibody titers in the residual sera, assuming that the residual sera provided a representative picture of A(H7N9) infections in the general population, accounting for potential cross-reactions. RESULTS: We collected a total of 5360 residual sera from December 2013 to April 2014 and from October 2014 to December 2014, and found two specimens that tested positive for H7N9 antibody at haemagglutination inhibition titer ≥40 and a neutralization titer ≥40. Based on this, we estimated that 64,000 (95 % credibility interval: 7300, 190,000) human infections with influenza A(H7N9) virus occurred in Guangzhou in early 2014, with an infection-fatality risk of 3.6 deaths (95 % credibility interval: 0.47, 15) per 10,000 infections. CONCLUSIONS: Our study suggested that the number of influenza A(H7N9) virus infections in Guangzhou substantially exceeded the number of laboratory-confirmed cases there, albeit with considerable imprecision. Our study was limited by the small number of positive specimens identified, and larger serologic studies would be valuable. Our analytic framework would be useful if larger serologic studies are done.published_or_final_versio

    Constitutive cytoplasmic localization of p21Waf1/Cip1 affects the apoptotic process in monocytic leukaemia

    Get PDF
    In the present study, we analysed the expression and localization of p21Waf1/Cip1 in normal and malignant haematopoietic cells. We demonstrate that in normal monocytic cells, protein kinase C (PKC)-induced p21 gene activation, which is nuclear factor-κB (NF-κB) independent, results in predominantly cytoplasmic localized p21 protein. In acute monocytic leukaemia (M4, M5), monocytic blasts (N=12) show constitutive cytoplasmic p21 expression in 75% of the cases, while in myeloid leukaemic blasts (N=10), low nuclear and cytoplasmic localization of p21 could be detected, which is also PKC dependent. Constitutive p21 expression in monocytic leukaemia might have important antiapoptotic functions. This is supported by the finding that in U937 cells overexpressing p21, VP16-induced apoptosis is significantly reduced (20.0±0.9 vs 55.8±3.8%, P<0.01, N=5), reflected by a reduced phosphorylation of p38 and JNK. Similarly, AML blasts with high cytoplasmic p21 were less sensitive to VP16-induced apoptosis as compared to AML cases with low or undetectable p21 expression (42.25 vs 12.3%, P<0.01). Moreover, complex formation between p21 and ASK1 could be demonstrated in AML cells, by means of coimmunoprecipitation. In summary, these results indicate that p21 has an antiapoptotic role in monocytic leukaemia, and that p21 expression is regulated in a PKC-dependent and NF-κB independent manner.

    Direct Visualization of the Reversible O2−/O− Redox Process in Li‐Rich Cathode Materials

    Full text link
    Conventional cathodes of Li‐ion batteries mainly operate through an insertion–extraction process involving transition metal redox. These cathodes will not be able to meet the increasing requirements until lithium‐rich layered oxides emerge with beyond‐capacity performance. Nevertheless, in‐depth understanding of the evolution of crystal and excess capacity delivered by Li‐rich layered oxides is insufficient. Herein, various in situ technologies such as X‐ray diffraction and Raman spectroscopy are employed for a typical material Li1.2Ni0.2Mn0.6O2, directly visualizing O−O− (peroxo oxygen dimers) bonding mostly along the c‐axis and demonstrating the reversible O2−/O− redox process. Additionally, the formation of the peroxo OO bond is calculated via density functional theory, and the corresponding OO bond length of ≈1.3 Å matches well with the in situ Raman results. These findings enrich the oxygen chemistry in layered oxides and open opportunities to design high‐performance positive electrodes for lithium‐ion batteries.A typical Li‐rich material Li1.2Ni0.2Mn0.6O2 is systematically analyzed by in situ X‐ray diffraction and Raman spectroscopy. Peroxo OO bonding is directly visualized mostly along the c‐axis and a reversible O2−/O− redox process is demonstrated. Additionally, the formation of peroxo OO bonds is calculated via density functional theory, and the corresponding OO bond length of ≈1.3 Å matches well with the in situ Raman results.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143642/1/adma201705197.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143642/2/adma201705197-sup-0001-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143642/3/adma201705197_am.pd

    Turnip mosaic potyvirus probably first spread to Eurasian brassica crops from wild orchids about 1000 years ago

    Get PDF
    Turnip mosaic potyvirus (TuMV) is probably the most widespread and damaging virus that infects cultivated brassicas worldwide. Previous work has indicated that the virus originated in western Eurasia, with all of its closest relatives being viruses of monocotyledonous plants. Here we report that we have identified a sister lineage of TuMV-like potyviruses (TuMV-OM) from European orchids. The isolates of TuMV-OM form a monophyletic sister lineage to the brassica-infecting TuMVs (TuMV-BIs), and are nested within a clade of monocotyledon-infecting viruses. Extensive host-range tests showed that all of the TuMV-OMs are biologically similar to, but distinct from, TuMV-BIs and do not readily infect brassicas. We conclude that it is more likely that TuMV evolved from a TuMV-OM-like ancestor than the reverse. We did Bayesian coalescent analyses using a combination of novel and published sequence data from four TuMV genes [helper component-proteinase protein (HC-Pro), protein 3(P3), nuclear inclusion b protein (NIb), and coat protein (CP)]. Three genes (HC-Pro, P3, and NIb), but not the CP gene, gave results indicating that the TuMV-BI viruses diverged from TuMV-OMs around 1000 years ago. Only 150 years later, the four lineages of the present global population of TuMV-BIs diverged from one another. These dates are congruent with historical records of the spread of agriculture in Western Europe. From about 1200 years ago, there was a warming of the climate, and agriculture and the human population of the region greatly increased. Farming replaced woodlands, fostering viruses and aphid vectors that could invade the crops, which included several brassica cultivars and weeds. Later, starting 500 years ago, inter-continental maritime trade probably spread the TuMV-BIs to the remainder of the world
    corecore