117 research outputs found

    Towards the THz Networks in the 6G Era

    Full text link
    This commentary dedicates to envision what role THz is going to play in the coming human-centric 6G era. Three distinct THz network types including outdoor, indoor, and body area networks are discussed, with an emphasis on their capabilities in human body detection. Synthesizing these networks will unlock a bunch of fascinating applications across industrial, biomedical and entertainment fields, significantly enhancing the quality of human life

    Intelligent Reflecting Surfaces vs. Full-Duplex Relays: A Comparison in the Air

    Full text link
    This letter aims to provide a fundamental analytical comparison for the two major types of relaying methods: intelligent reflecting surfaces and full-duplex relays, particularly focusing on unmanned aerial vehicle communication scenarios. Both amplify-and-forward and decode-and-forward relaying schemes are included in the comparison. In addition, optimal 3D UAV deployment and minimum transmit power under the quality of service constraint are derived. Our numerical results show that IRSs of medium size exhibit comparable performance to AF relays, meanwhile outperforming DF relays under extremely large surface size and high data rates

    On the Study of Sustainability and Outage of SWIPT-Enabled Wireless Communications

    Get PDF
    Wireless power transfer technologies such as simultaneous wireless information and power transfer (SWIPT) have shown significant potential to revolutionise the design of future wireless communication systems. When the only energy source is from the wireless signals that are mainly intended for information communications, the sustainability and outage performance of SWIPT systems become critical factors in theoretical evaluation and practical applications. This paper firstly models the energy harvesting and energy consumption of the power splitting protocol based SWIPT systems to investigate the general sustainability condition. We further model the power and information transfer outage probabilities using Markov Chains, which are unique for SWIPT systems since they both could cause communication outage. We further demonstrate how to apply the closed-form expression of the outage to optimise the key parameter of splitting ratio for SWIPT systems. Hardware and numerical experiments demonstrate the validity of the proposed model and outage analysis, and confirm the effectiveness of the solution to calculate the optimal splitting ratios under different signal and channel conditions

    Formation Control Algorithms for Multi-UAV Systems with Unstable Topologies and Hybrid Delays

    Get PDF
    Multi-UAV systems rely on the communication network to exchange mission-critical data for their coordination and deployment, while communication delays could cause significant challenges to both tasks. The impact of the delays becomes even more severe if the delay, network structure and formation are all time-varying, a common challenge faced by real-world multiUAV systems. To address this challenge, we consider time-varying delays that exist in multiple channels caused by transmitting information and internal delays that exist in UAVs themselves caused by obtaining and processing their own data. We design an effective distributed formation control protocol for a multiUAV system to achieve time-varying formation; this protocol is particularly useful for dealing with time-varying multi-UAV network topologies as well. We provide rigorous convergence analysis for different scenarios with or without hybrid delays and obtain sufficient conditions for achieving the time-varying formation. Furthermore, we propose an algorithm for quantifying the maximum delay allowed by the system. Based on the designed formation algorithm, a deployment strategy is proposed to coordinate multi-UAV systems in a practical environment. Numerical analysis and UAV hardware experiments are conducted to evaluate the performance of the theoretical results and investigate the feasibility of generated flight trajectories

    Two-path succussive relaying with hybrid demodulate and forward

    Get PDF
    This paper proposes a novel demodulation-and-forward (DMF) scheme for the two-path succussive relay system. While the two-path relaying avoids the data rate loss that occurs in many one-relay cooperative systems, its performance is severely limited by interrelay interference. In this paper, we propose a hybrid DMF scheme for the two-path relay system so that the relays can switch between direct and differential demodulation modes according to channel conditions. The hybrid DMF scheme not only performs better than existing two-path approaches but is easy to achieve synchronization at the relays as well, which is particularly important as a relay receives signals from both the source and the other relay. The proposed hybrid DMF scheme provides an innovative way to implement the two-path relaying scheme

    MobiFuzzyTrust: An efficient fuzzy trust inference mechanism in mobile social networks

    Get PDF
    PublishedJournal Article© 2014 IEEE. Mobile social networks (MSNs) facilitate connections between mobile users and allow them to find other potential users who have similar interests through mobile devices, communicate with them, and benefit from their information. As MSNs are distributed public virtual social spaces, the available information may not be trustworthy to all. Therefore, mobile users are often at risk since they may not have any prior knowledge about others who are socially connected. To address this problem, trust inference plays a critical role for establishing social links between mobile users in MSNs. Taking into account the nonsemantical representation of trust between users of the existing trust models in social networks, this paper proposes a new fuzzy inference mechanism, namely MobiFuzzyTrust, for inferring trust semantically from one mobile user to another that may not be directly connected in the trust graph of MSNs. First, a mobile context including an intersection of prestige of users, location, time, and social context is constructed. Second, a mobile context aware trust model is devised to evaluate the trust value between two mobile users efficiently. Finally, the fuzzy linguistic technique is used to express the trust between two mobile users and enhance the human's understanding of trust. Real-world mobile dataset is adopted to evaluate the performance of the MobiFuzzyTrust inference mechanism. The experimental results demonstrate that MobiFuzzyTrust can efficiently infer trust with a high precision.This work was partly supported by the National Nature Science Foundation of China under grant 61201219 and the EU FP7 CLIMBER project under Grant Agreement No. PIRSES-GA-2012-318939
    corecore