92 research outputs found
Do human transposable element small RNAs serve primarily as genome defenders or genome regulators?
It is currently thought that small RNA (sRNA) based repression mechanisms are primarily employed to mitigate the mutagenic threat posed by the activity of transposable elements (TEs). This can be achieved by the sRNA guided processing of TE transcripts via Dicer-dependent (e.g., siRNA) or Dicer-independent (e.g., piRNA) mechanisms. For example, potentially active human L1 elements are silenced by mRNA cleavage induced by element encoded siRNAs, leading to a negative correlation between element mRNA and siRNA levels. On the other hand, there is emerging evidence that TE derived sRNAs can also be used to regulate the host genome. Here, we evaluated these two hypotheses for human TEs by comparing the levels of TE derived mRNA and TE sRNA across six tissues. The genome defense hypothesis predicts a negative correlation between TE mRNA and TE sRNA levels, whereas the genome regulatory hypothesis predicts a positive correlation. On average, TE mRNA and TE sRNA levels are positively correlated across human tissues. These correlations are higher than seen for human genes or for randomly permuted control data sets. Overall, Alu subfamilies show the highest positive correlations of element mRNA and sRNA levels across tissues, although a few of the youngest, and potentially most active, Alu subfamilies do show negative correlations. Thus, Alu derived sRNAs may be related to both genome regulation and genome defense. These results are inconsistent with a simple model whereby TE derived sRNAs reduce levels of standing TE mRNA via transcript cleavage, and suggest that human cells efficiently process TE transcripts into sRNA based on the available message levels. This may point to a widespread role for processed TE transcripts in genome regulation or to alternative roles of TE-to-sRNA processing including the mitigation of TE transcript cytotoxicity
Piwi Is Required to Limit Exhaustion of Aging Somatic Stem Cells
Please see the graphical abstract in the supplemental files
A Gibbs sampling strategy applied to the mapping of ambiguous short-sequence tags
Motivation: Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is widely used in biological research. ChIP-seq experiments yield many ambiguous tags that can be mapped with equal probability to multiple genomic sites. Such ambiguous tags are typically eliminated from consideration resulting in a potential loss of important biological information
Transcriptional profiling of interleukin-2-primed human adipose derived mesenchymal stem cells revealed dramatic changes in stem cells response imposed by replicative senescence
Inflammation is a double-edged sword with both detrimental and
beneficial consequences. Understanding of the mechanisms of crosstalk
between the inflammatory milieu and human adult mesenchymal stem cells
is an important basis for clinical efforts. Here, we investigate changes
in the transcriptional response of human adipose-derived stem cells to
physiologically relevant levels of IL-2 (IL-2 priming) upon replicative
senescence. Our data suggest that replicative senescence might
dramatically impede human mesenchymal stem cell (MSC) function via
global transcriptional deregulation in response to IL-2. We uncovered a
novel senescence-associated transcriptional signature in human
adipose-derived MSCs hADSCs after exposure to pro-inflammatory
environment: significant enhancement of the expression of the genes
encoding potent growth factors and cytokines with anti-inflammatory and
migration-promoting properties, as well as genes encoding angiogenic and
antiapoptotic promoting factors, all of which could participate in the
establishment of a unique microenvironment. We observed transcriptional
up-regulation of critical components of the nitric oxide synthase
pathway (iNOS) in hADSCs upon replicative senescence suggesting, that
senescent stem cells can acquire metastasis-promoting properties via
stem cell-mediated immunosuppression. Our study highlights the
importance of age as a factor when designing cell-based or
pharmacological therapies for older patients and predicts measurable
biomarkers characteristic of an environment that is conducive to cancer
cells invasiveness and metastasis.LM and BGG was supported by grants from the Spanish Ministry of Science
and Innovation (SAF 2010-15239) to BGG and. LMP are supported by FPI
fellowships from the Spanish Ministry, and BGG acknowledges support from
the ``Ramon y Cajal´´ tenure track programme from the Spanish Ministry
of Science and Innovation (RYC2009-04669). AS and AA are fellows of
Bolashak International Scholarship, AA, AN, AS are sponsored by KazNMU
sponsored program.S
Opposing activities of oncogenic MIR17HG and tumor suppressive MIR100HG clusters and their gene targets regulate replicative senescence in human adult stem cells.
Growing evidence suggests that many diseases of aging, including diseases associated with robust changes and adipose deports, may be caused by resident adult stem cell exhaustion due to the process called cellular senescence. Understanding how microRNA pathways can regulate cellular senescence is crucial for the development of novel diagnostic and therapeutic strategies to combat these pathologies. Herein, using integrated transcriptomic and semi-quantitative proteomic analysis, we provide a system level view of the regulation of human adipose-derived stem cell senescence by a subset of mature microRNAs (termed senescence-associated-microRNAs) produced by biogenesis of oncogenic MIR17HG and tumor-suppressive MIR100HG clusters. We demonstrate functional significance of these mature senescence-associated-microRNAs in the process of replicative senescence of human adipose-derived stem cells ex-vivo and define a set of senescence-associated-microRNA gene targets that are able to elicit, modulate and, most importantly, balance intimate connections between oncogenic and senescent events
Oct4-Induced Reprogramming Is Required for Adult Brain Neural Stem Cell Differentiation into Midbrain Dopaminergic Neurons
Neural stem cells (NSCs) lose their competency to generate region-specific neuronal populations at an early stage during embryonic brain development. Here we investigated whether epigenetic modifications can reverse the regional restriction of mouse adult brain subventricular zone (SVZ) NSCs. Using a variety of chemicals that interfere with DNA methylation and histone acetylation, we showed that such epigenetic modifications increased neuronal differentiation but did not enable specific regional patterning, such as midbrain dopaminergic (DA) neuron generation. Only after Oct-4 overexpression did adult NSCs acquire a pluripotent state that allowed differentiation into midbrain DA neurons. DA neurons derived from Oct4-reprogrammed NSCs improved behavioural motor deficits in a rat model of Parkinson's disease (PD) upon intrastriatal transplantation. Here we report for the first time the successful differentiation of SVZ adult NSCs into functional region-specific midbrain DA neurons, by means of Oct-4 induced pluripotency
A Mammalian Conserved Element Derived from SINE Displays Enhancer Properties Recapitulating Satb2 Expression in Early-Born Callosal Projection Neurons
Short interspersed repetitive elements (SINEs) are highly repeated sequences that account for a significant proportion of many eukaryotic genomes and are usually considered βjunk DNAβ. However, we previously discovered that many AmnSINE1 loci are evolutionarily conserved across mammalian genomes, suggesting that they may have acquired significant functions involved in controlling mammalian-specific traits. Notably, we identified the AS021 SINE locus, located 390 kbp upstream of Satb2. Using transgenic mice, we showed that this SINE displays specific enhancer activity in the developing cerebral cortex. The transcription factor Satb2 is expressed by cortical neurons extending axons through the corpus callosum and is a determinant of callosal versus subcortical projection. Mouse mutants reveal a crucial function for Sabt2 in corpus callosum formation. In this study, we compared the enhancer activity of the AS021 locus with Satb2 expression during telencephalic development in the mouse. First, we showed that the AS021 enhancer is specifically activated in early-born Satb2+ neurons. Second, we demonstrated that the activity of the AS021 enhancer recapitulates the expression of Satb2 at later embryonic and postnatal stages in deep-layer but not superficial-layer neurons, suggesting the possibility that the expression of Satb2 in these two subpopulations of cortical neurons is under genetically distinct transcriptional control. Third, we showed that the AS021 enhancer is activated in neurons projecting through the corpus callosum, as described for Satb2+ neurons. Notably, AS021 drives specific expression in axons crossing through the ventral (TAG1β/NPY+) portion of the corpus callosum, confirming that it is active in a subpopulation of callosal neurons. These data suggest that exaptation of the AS021 SINE locus might be involved in enhancement of Satb2 expression, leading to the establishment of interhemispheric communication via the corpus callosum, a eutherian-specific brain structure
Methamphetamine Preconditioning Alters Midbrain Transcriptional Responses to Methamphetamine-Induced Injury in the Rat Striatum
Methamphetamine (METH) is an illicit drug which is neurotoxic to the mammalian brain. Numerous studies have revealed significant decreases in dopamine and serotonin levels in the brains of animals exposed to moderate-to-large METH doses given within short intervals of time. In contrast, repeated injections of small nontoxic doses of the drug followed by a challenge with toxic METH doses afford significant protection against monoamine depletion. The present study was undertaken to test the possibility that repeated injections of the drug might be accompanied by transcriptional changes involved in rendering the nigrostriatal dopaminergic system refractory to METH toxicity. Our results confirm that METH preconditioning can provide significant protection against METH-induced striatal dopamine depletion. In addition, the presence and absence of METH preconditioning were associated with substantial differences in the identity of the genes whose expression was affected by a toxic METH challenge. Quantitative PCR confirmed METH-induced changes in genes of interest and identified additional genes that were differentially impacted by the toxic METH challenge in the presence of METH preconditioning. These genes include small heat shock 27 kD 27 protein 2 (HspB2), thyrotropin-releasing hormone (TRH), brain derived neurotrophic factor (BDNF), c-fos, and some encoding antioxidant proteins including CuZn superoxide dismutase (CuZnSOD), glutathione peroxidase (GPx)-1, and heme oxygenase-1 (Hmox-1). These observations are consistent, in part, with the transcriptional alterations reported in models of lethal ischemic injuries which are preceded by ischemic or pharmacological preconditioning. Our findings suggest that multiple molecular pathways might work in tandem to protect the nigrostriatal dopaminergic pathway against the deleterious effects of the toxic psychostimulant. Further analysis of the molecular and cellular pathways regulated by these genes should help to provide some insight into the neuroadaptive potentials of the brain when repeatedly exposed to drugs of abuse
Regulatory Architecture of the Neuronal Cacng2/TarpΞ³2 Gene Promoter: Multiple Repressive Domains, a Polymorphic Regulatory Short Tandem Repeat, and Bidirectional Organization with Co-regulated lncRNAs
CACNG2 (TARPΞ³2, Stargazin) is a multi-functional regulator of excitatory neurotransmission and has been implicated in the pathological processes of several brain diseases. Cacng2 function is dependent upon expression level, but currently, little is known about the molecular mechanisms that control expression of this gene. To address this deficit and investigate disease-related gene variants, we have cloned and characterized the rat Cacng2 promoter and have defined three major features: (i) multiple repressive domains that include an array of RE-1 silencing transcription factor (REST) elements, and a calcium regulatory element-binding factor (CaRF) element, (ii) a (poly-GA) short tandem repeat (STR), and (iii) bidirectional organization with expressed lncRNAs. Functional activity of the promoter was demonstrated in transfected neuronal cell lines (HT22 and PC12), but although selective removal of REST and CaRF domains was shown to enhance promoter-driven transcription, the enhanced Cacng2 promoter constructs were still about fivefold weaker than a comparable rat Synapsin-1 promoter sequence. Direct evidence of REST activity at the Cacng2 promoter was obtained through co-transfection with an established dominant-negative REST (DNR) construct. Investigation of the GA-repeat STR revealed polymorphism across both animal strains and species, and size variation was also observed in absence epilepsy disease model cohorts (Genetic Absence Epilepsy Rats, Strasbourg [GAERS] and non-epileptic control [NEC] rats). These data provide evidence of a genotype (STR)-phenotype correlation that may be unique with respect to proximal gene regulatory sequence in the demonstrated absence of other promoter, or 3β² UTR variants in GAERS rats. However, although transcriptional regulatory activity of the STR was demonstrated in further transfection studies, we did not find a GAERS vs. NEC difference, indicating that this specific STR length variation may only be relevant in the context of other (Cacna1h and Kcnk9) gene variants in this disease model. Additional studies revealed further (bidirectional) complexity at the Cacng2 promoter, and we identified novel, co-regulated, antisense rat lncRNAs that are paired with Cacng2 mRNA. These studies have provided novel insights into the organization of a synaptic protein gene promoter, describing multiple repressive and modulatory domains that can mediate diverse regulatory inputs
- β¦