248 research outputs found

    Research and Creative Achievement (2009)

    Get PDF

    Hikmet-i peder

    Get PDF
    Ahmet Mithat'ın Tarik'te tefrika edilen Hikmet-i Peder adlı roman

    Granulovirus PK-1 kinase activity relies on a side-to-side dimerization mode centered on the regulatory αC helix

    Get PDF
    The life cycle of Baculoviridae family insect viruses depends on the viral protein kinase, PK-1, to phosphorylate the regulatory protein, p6.9, to induce baculoviral genome release. Here, we report the crystal structure of Cydia pomenella granulovirus PK-1, which, owing to its likely ancestral origin among host cell AGC kinases, exhibits a eukaryotic protein kinase fold. PK-1 occurs as a rigid dimer, where an antiparallel arrangement of the αC helices at the dimer core stabilizes PK-1 in a closed, active conformation. Dimerization is facilitated by C-lobe:C-lobe and N-lobe:N-lobe interactions between protomers, including the domain-swapping of an N-terminal helix that crowns a contiguous β-sheet formed by the two N-lobes. PK-1 retains a dimeric conformation in solution, which is crucial for catalytic activity. Our studies raise the prospect that parallel, side-to-side dimeric arrangements that lock kinase domains in a catalytically-active conformation could function more broadly as a regulatory mechanism among eukaryotic protein kinases

    Views on the Past, Present, and Future of Business and Information Systems Engineering

    Get PDF
    ‘‘The times they are a-changin,’’ a famous song title by Bob Dylan, also applies to our profession and our subject of study. Information technology has always been a driver for innovation. The recent years, however, have seen IT-based innovations that truly impact everybody’s lives. Everything that can be digitized will be digitized, and this trend is continuing at an amazing speed. For a discipline that looks at the design and utilization of information systems these are exciting times. Yet, it is also a time full of challenges. While our discipline has much to contribute, it competes with other disciplines for topics and ideas. Also, the scope of topics studied has become broader and broader, and so have our methods. While initial work in Business and Information Systems Engineering (BISE) was often rooted in artificial intelligence, database systems, or operations research, the community has adopted new approaches to address new types of problems. Nowadays, we also have a strong group of academics working primarily with empirical methods or methods from microeconomics, to name just a few. This development towards a more multiparadigmatic discipline also had its challenges and there were controversial discussions along the way

    COL4A3 is degraded in allergic asthma and degradation predicts response to anti-IgE therapy.

    Full text link
    BACKGROUND: Asthma is a heterogeneous syndrome substantiating the urgent requirement for endotype-specific biomarkers. Dysbalance of fibrosis and fibrolysis in asthmatic lung tissue leads to reduced levels of the inflammation-protective collagen 4 (COL4A3). OBJECTIVE: To delineate the degradation of COL4A3 in allergic airway inflammation and evaluate the resultant product as a biomarker for anti-IgE therapy response. METHODS: The serological COL4A3 degradation marker C4Ma3 (Nordic Bioscience, Denmark) and serum cytokines were measured in the ALLIANCE cohort (paediatric cases/controls: n=134/n=35; adult cases/controls: n=149/n=31). Exacerbation of allergic airway disease in mice was induced by sensitising to ovalbumin (OVA), challenge with OVA aerosol and instillation of poly(cytidylic-inosinic). Fulacimstat (chymase inhibitor; Bayer) was used to determine the role of mast cell chymase in COL4A3 degradation. Patients with cystic fibrosis (n=14) and cystic fibrosis with allergic bronchopulmonary aspergillosis (ABPA; n=9) as well as patients with severe allergic uncontrolled asthma (n=19) were tested for COL4A3 degradation. Omalizumab (anti-IgE) treatment was assessed using the Asthma Control Test. RESULTS: Serum levels of C4Ma3 were increased in asthma in adults and children alike and linked to a more severe, exacerbating allergic asthma phenotype. In an experimental asthma mouse model, C4Ma3 was dependent on mast cell chymase. Serum C4Ma3 was significantly elevated in cystic fibrosis plus ABPA and at baseline predicted the success of the anti-IgE therapy in allergic, uncontrolled asthmatics (diagnostic OR 31.5). CONCLUSION: C4Ma3 levels depend on lung mast cell chymase and are increased in a severe, exacerbating allergic asthma phenotype. C4Ma3 may serve as a novel biomarker to predict anti-IgE therapy response

    An integrated cell atlas of the lung in health and disease

    Get PDF
    Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP1+ profibrotic monocyte-derived macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall, the HLCA serves as an example for the development and use of large-scale, cross-dataset organ atlases within the Human Cell Atlas

    Recent Progress and Next Steps for the MATHUSLA LLP Detector

    Full text link
    We report on recent progress and next steps in the design of the proposed MATHUSLA Long Lived Particle (LLP) detector for the HL-LHC as part of the Snowmass 2021 process. Our understanding of backgrounds has greatly improved, aided by detailed simulation studies, and significant R&D has been performed on designing the scintillator detectors and understanding their performance. The collaboration is on track to complete a Technical Design Report, and there are many opportunities for interested new members to contribute towards the goal of designing and constructing MATHUSLA in time for HL-LHC collisions, which would increase the sensitivity to a large variety of highly motivated LLP signals by orders of magnitude.Comment: Contribution to Snowmass 2021 (EF09, EF10, IF6, IF9), 18 pages, 12 figures. v2: included additional endorser
    corecore