15 research outputs found

    Predictive properties of the A-TAC inventory when screening for childhood-onset neurodevelopmental problems in a population-based sample

    Get PDF
    Background: Identifying children with childhood-onset neurodevelopmental problems (NDPs, defined here as autism spectrum disorders [ASDs], attention-deficit/hyperactivity disorder [AD/HD], tic disorders [TDs], learning disorders [LDs] and development coordination disorder), using easily administered screening instruments, is a prerequisite for epidemiological research. Such instruments are also clinically useful to prioritize children for comprehensive assessments, to screen risk groups, and to follow controls. Autism-Tics, ADHD, and other Co-morbidities inventory (A-TAC) was developed to meet these requirements; here the A-TAC's prospective and psychometric properties are examined, when used in a population-based, epidemiological setting. Methods: Since 2004, parents of all Swedish twins have been asked to take part in an ongoing, nation-wide twin study (The Child and Adolescent Twin Study in Sweden). The study includes the A-TAC, carried out as a telephone interview with parents of twins aged 9 or 12. In the present study, screen-positive twins from three birth year cohorts (1993-1995) were invited to a comprehensive clinical follow-up (blinded for previous screening results) together with their co-twins and randomly selected, healthy controls at age 15 (Total N = 452). Results: Sensitivity and specificity of A-TAC scores for predicting later clinical diagnoses were good to excellent overall, with values of the area under the receiver operating characteristics curves ranging from 0.77 (AD/HD) to 0.91 (ASDs). Among children who were screen-positive for an ASD, 48% received a clinical diagnosis of ASDs. For AD/HD, the corresponding figure was also 48%, for LDs 16%, and for TDs 60%. Between 4% and 35% of screen-positive children did not receive any diagnosis at the clinical follow-up three years later. Among screen-negative controls, prevalence of ASDs, AD/HD, LDs, and TDs was 0%, 7%, 4%, and 2%, respectively. Conclusions: The A-TAC appeared to be a valid instrument to assess NDPs in this population-based, longitudinal study. It has good-to-excellent psychometric properties, with an excellent ability to distinguish NDPs (mainly ASDs) from non-NDPs at least three years after the screening evaluations, although specific diagnoses did not correspond closely to actual clinical diagnoses

    Data from: More future synergies and less trade‐offs between forest ecosystem services with natural climate solutions instead of bioeconomy solutions

    No full text
    To reach the Paris Agreement, societies need to increase the global terrestrial carbon sink. There are many climate change mitigation solutions (CCMS) for forests, including increasing bioenergy, bioeconomy and protection. Bioenergy and bioeconomy solutions use climate-smart, intensive management to generate high quantities of bioenergy and bioproducts. Protection of (semi-)natural forests is a major component of 'natural climate solution' (NCS) since forests store carbon in standing biomass and soil. Furthermore, protected forests provide more habitat for biodiversity and non-wood ecosystem services (ES). We investigated the impacts of different CCMS and climate scenarios, jointly or in isolation, on future wood ES, non-wood ES, and regulating ES for a major wood provider for the international market. Specifically, we projected future ES given by three CCMS scenarios for Sweden 2020-2100. In the long term, fulfilling the increasing wood demand through bioenergy and bioeconomy solutions will decrease ES multifunctionality, but the increased stand age and wood stocks induced by rising greenhouse gas (GHG) concentrations will partially offset these negative effects. Adopting bioenergy and bioeconomy solutions will have a greater negative impact on ES supply than adopting NCS. Bioenergy or bioeconomy solutions, as well as increasing GHG emissions, will reduce synergies and increase trade-offs in ES. NCS, by contrast, increases the supply of multiple ES in synergy, even transforming current ES trade-offs into future synergies. Moreover, NCS can be considered an adaptation measure to offset negative climate change effects on the future supplies of non-wood ES. In boreal countries around the world, forestry strategies that integrate NCS more deeply are crucial to ensure a synergistic supply of multiple ES
    corecore