703 research outputs found

    Atoms in a radiofrequency-dressed optical lattice

    Full text link
    We load cold atoms into an optical lattice dramatically reshaped by radiofrequency (rf) coupling of state-dependent lattice potentials. This rf dressing changes the unit cell of the lattice at a subwavelength scale, such that its curvature and topology departs strongly from that of a simple sinusoidal lattice potential. Radiofrequency dressing has previously been performed at length scales from mm to tens of microns, but not at the single-optical-wavelength scale. At this length scale significant coupling between adiabatic potentials leads to nonadiabatic transitions, which we measure as a function of lattice depth and dressing frequency and amplitude. We also investigate the dressing by measuring changes in the momentum distribution of the dressed states.Comment: 5 pages, 4 figure

    The Endogenous Th17 Response in NO<inf>2</inf>-Promoted Allergic Airway Disease Is Dispensable for Airway Hyperresponsiveness and Distinct from Th17 Adoptive Transfer

    Get PDF
    Severe, glucocorticoid-resistant asthma comprises 5-7% of patients with asthma. IL-17 is a biomarker of severe asthma, and the adoptive transfer of Th17 cells in mice is sufficient to induce glucocorticoid-resistant allergic airway disease. Nitrogen dioxide (NO2) is an environmental toxin that correlates with asthma severity, exacerbation, and risk of adverse outcomes. Mice that are allergically sensitized to the antigen ovalbumin by exposure to NO2 exhibit a mixed Th2/Th17 adaptive immune response and eosinophil and neutrophil recruitment to the airway following antigen challenge, a phenotype reminiscent of severe clinical asthma. Because IL-1 receptor (IL-1R) signaling is critical in the generation of the Th17 response in vivo, we hypothesized that the IL-1R/Th17 axis contributes to pulmonary inflammation and airway hyperresponsiveness (AHR) in NO2-promoted allergic airway disease and manifests in glucocorticoid-resistant cytokine production. IL-17A neutralization at the time of antigen challenge or genetic deficiency in IL-1R resulted in decreased neutrophil recruitment to the airway following antigen challenge but did not protect against the development of AHR. Instead, IL-1R-/- mice developed exacerbated AHR compared to WT mice. Lung cells from NO2-allergically inflamed mice that were treated in vitro with dexamethasone (Dex) during antigen restimulation exhibited reduced Th17 cytokine production, whereas Th17 cytokine production by lung cells from recipient mice of in vitro Th17-polarized OTII T-cells was resistant to Dex. These results demonstrate that the IL-1R/Th17 axis does not contribute to AHR development in NO2-promoted allergic airway disease, that Th17 adoptive transfer does not necessarily reflect an endogenously-generated Th17 response, and that functions of Th17 responses are contingent on the experimental conditions in which they are generated. © 2013 Martin et al

    The reaction of bovine alpha-thrombin with tetranitromethane. Characterization of the modified protein.

    Get PDF
    Previous studies from several laboratories have shown that thrombin is inactivated by tetranitromethane with the formation of nitrotyrosine. The inactivation is characterized by an apparently greater loss of fibrinogen-clotting activity than activity toward synthetic ester substrates, suggesting that the residues modified by tetranitromethane are involved in the interaction of thrombin with fibrinogen. This study was designed 1) to determine the effect of solvent conditions on the rate of modification and the stoichiometry of the reaction of tetranitromethane with bovine alpha-thrombin; 2) to identify the residue(s) modified; and 3) to characterize the modified enzyme with respect to its interaction with peptide nitroanilide substrates and fibrinogen. The inactivation of thrombin by tetranitromethane proceeded more rapidly in 50 mM Tris, pH 8.0, than in 50 mM sodium phosphate, 100 mM NaCl, pH 8.0. Approximately 10% fibrinogen-clotting activity remained at maximal inactivation. A study of the effect of tetranitromethane concentration on the rate of inactivation suggested that the loss of activity was the result of the modification of 1 mol of tyrosine/mol of thrombin. A similar result was obtained from the analysis of the extent of inactivation as a function of the extent of protein modification. Structural analysis of the modified protein showed substantial modification at both Tyr71 and Tyr85. Enzyme kinetic studies were performed with the modified protein and a control thrombin with N2-tosylglycylprolylarginine p-nitroanilide. H-D-phenylalanylpipecolylarginine p-nitronailide, and purified bovine fibrinogen. With all three substrates, a substantial decrease in kcat was observed, whereas there was essentially no change in Km. These results suggest that, contrary to previous suggestions, the modification of Tyr71 and Tyr85 in thrombin does not influence the binding of substrates, but rather influences active site reactivity

    Inhibition of Expression in Escherichia coli of a Virulence Regulator MglB of Francisella tularensis Using External Guide Sequence Technology

    Get PDF
    External guide sequences (EGSs) have successfully been used to inhibit expression of target genes at the post-transcriptional level in both prokaryotes and eukaryotes. We previously reported that EGS accessible and cleavable sites in the target RNAs can rapidly be identified by screening random EGS (rEGS) libraries. Here the method of screening rEGS libraries and a partial RNase T1 digestion assay were used to identify sites accessible to EGSs in the mRNA of a global virulence regulator MglB from Francisella tularensis, a Gram-negative pathogenic bacterium. Specific EGSs were subsequently designed and their activities in terms of the cleavage of mglB mRNA by RNase P were tested in vitro and in vivo. EGS73, EGS148, and EGS155 in both stem and M1 EGS constructs induced mglB mRNA cleavage in vitro. Expression of stem EGS73 and EGS155 in Escherichia coli resulted in significant reduction of the mglB mRNA level coded for the F. tularensis mglB gene inserted in those cells

    Field-sensitive addressing and control of field-insensitive neutral-atom qubits

    Full text link
    The establishment of a scalable scheme for quantum computing with addressable and long-lived qubits would be a scientific watershed, harnessing the laws of quantum physics to solve classically intractable problems. The design of many proposed quantum computational platforms is driven by competing needs: isolating the quantum system from the environment to prevent decoherence, and easily and accurately controlling the system with external fields. For example, neutral-atom optical-lattice architectures provide environmental isolation through the use of states that are robust against fluctuating external fields, yet external fields are essential for qubit addressing. Here we demonstrate the selection of individual qubits with external fields, despite the fact that the qubits are in field-insensitive superpositions. We use a spatially inhomogeneous external field to map selected qubits to a different field-insensitive superposition ("optical MRI"), minimally perturbing unselected qubits, despite the fact that the addressing field is not spatially localized. We show robust single-qubit rotations on neutral-atom qubits located at selected lattice sites. This precise coherent control is an important step forward for lattice-based neutral-atom quantum computation, and is quite generally applicable to state transfer and qubit isolation in other architectures using field-insensitive qubits.Comment: press embarg

    The effect of cigarette smoke exposure on the development of inflammation in lungs, gut and joints of TNFΔARE mice

    Get PDF
    The inflammatory cytokine TNF-alpha is a central mediator in many immune-mediated diseases, such as Crohn's disease (CD), spondyloarthritis (SpA) and chronic obstructive pulmonary disease (COPD). Epidemiologic studies have shown that cigarette smoking (CS) is a prominent common risk factor in these TNF-dependent diseases. We exposed TNF Delta ARE mice; in which a systemic TNF-alpha overexpression leads to the development of inflammation; to 2 or 4 weeks of air or CS. We investigated the effect of deregulated TNF expression on CS-induced pulmonary inflammation and the effect of CS exposure on the initiation and progression of gut and joint inflammation. Upon 2 weeks of CS exposure, inflammation in lungs of TNF Delta ARE mice was significantly aggravated. However, upon 4 weeks of CS-exposure, this aggravation was no longer observed. TNF Delta ARE mice have no increases in CD4+ and CD8+ T cells and a diminished neutrophil response in the lungs after 4 weeks of CS exposure. In the gut and joints of TNF Delta ARE mice, 2 or 4 weeks of CS exposure did not modulate the development of inflammation. In conclusion, CS exposure does not modulate gut and joint inflammation in TNF Delta ARE mice. The lung responses towards CS in TNF Delta ARE mice however depend on the duration of CS exposure

    Evidence for a prevalent dimorphism in the activation peptide of human coagulation factor IX.

    Get PDF
    We have independently isolated and characterized cDNA and genomic clones for the human coagulation factor IX. Sequence analysis in both cases indicates that threonine is encoded by the triplet ACT as the third residue of the activation peptide. This is in agreement with some earlier reports but in disagreement with others that show the alanine triplet GCT at this position. The discrepancy can thus be accounted for by natural variation of a single nucleotide in the normal population. Amino acid sequence analyses of activated factor IX from plasma samples of four individuals yielded two cases of alanine and two cases of threonine at the third position of the activation peptide. In factor IX from pooled plasma and in factor IX from a heterozygous individual, however, both alanine and threonine were found. Taken together, the findings show that a prevalent nondeleterious dimorphism exists in the activation peptide of human coagulation factor IX

    Treatment target achievement after myocardial infarction and ischaemic stroke: cardiovascular risk factors, medication use, and lifestyle: the Tromsø Study 2015-16.

    Get PDF
    AIMS: To investigate European guideline treatment target achievement in cardiovascular risk factors, medication use, and lifestyle, after myocardial infarction (MI) or ischaemic stroke, in women and men living in Norway. METHODS AND RESULTS: In the population-based Tromsø Study 2015-16 (attendance 65%), 904 participants had previous validated MI and/or stroke. Cross-sectionally, we investigated target achievement for blood pressure (sedentary, accelerometer-measured moderate-to-vigorous ≥150 min/week), diet (intake of fruits ≥200 g/day, vegetables ≥200 g/day, fish ≥200 g/week, saturated fat <10E%, fibre ≥30 g/day, alcohol women ≤10 g/day, men ≤20 g/day), and medication use (antihypertensives, lipid-lowering drugs, antithrombotics, and antidiabetics), using regression models. Proportion of target achievement was for blood pressure 55.2%, LDL cholesterol 9.0%, HbA1c 42.5%, BMI 21.1%, waist circumference 15.7%, non-smoking 86.7%, self-reported physical activity 79%, objectively measured physical activity 11.8%, intake of fruit 64.4%, vegetables 40.7%, fish 96.7%, saturated fat 24.3%, fibre 29.9%, and alcohol 78.5%, use of antidiabetics 83.6%, lipid-lowering drugs 81.0%, antihypertensives 75.9%, and antithrombotics 74.6%. Only 0.7% achieved all cardiovascular risk factor targets combined. Largely, there was little difference between the sexes, and in characteristics, medication use, and lifestyle among target achievers compared to non-achievers. CONCLUSION: Secondary prevention of cardiovascular disease was suboptimal. A negligible proportion achieved the treatment target for all risk factors. Improvement in follow-up care and treatment after MI and stroke is needed

    Recent developments in trapping and manipulation of atoms with adiabatic potentials

    Get PDF
    A combination of static and oscillating magnetic fields can be used to ‘dress’ atoms with radio-frequency (RF), or microwave, radiation. The spatial variation of these fields can be used to create an enormous variety of traps for ultra-cold atoms and quantum gases. This article reviews the type and character of these adiabatic traps and the applications which include atom interferometry and the study of low-dimensional quantum systems. We introduce the main concepts of magnetic traps leading to adiabatic dressed traps. The concept of adiabaticity is discussed in the context of the Landau–Zener model. The first bubble trap experiment is reviewed together with the method used for loading it. Experiments based on atom chips show the production of double wells and ring traps. Dressed atom traps can be evaporatively cooled with an additional RF field, and a weak RF field can be used to probe the spectroscopy of the adiabatic potentials. Several approaches to ring traps formed from adiabatic potentials are discussed, including those based on atom chips, time-averaged adiabatic potentials and induction methods. Several proposals for adiabatic lattices with dressed atoms are also reviewed
    • …
    corecore