4,454 research outputs found

    Modeling of transitional flows

    Get PDF
    An effort directed at developing improved transitional models was initiated. The focus of this work was concentrated on the critical assessment of a popular existing transitional model developed by McDonald and Fish in 1972. The objective of this effort was to identify the shortcomings of the McDonald-Fish model and to use the insights gained to suggest modifications or alterations of the basic model. In order to evaluate the transitional model, a compressible boundary layer code was required. Accordingly, a two-dimensional compressible boundary layer code was developed. The program was based on a three-point fully implicit finite difference algorithm where the equations were solved in an uncoupled manner with second order extrapolation used to evaluate the non-linear coefficients. Iteration was offered as an option if the extrapolation error could not be tolerated. The differencing scheme was arranged to be second order in both spatial directions on an arbitrarily stretched mesh. A variety of boundary condition options were implemented including specification of an external pressure gradient, specification of a wall temperature distribution, and specification of an external temperature distribution. Overall the results of the initial phase of this work indicate that the McDonald-Fish model does a poor job at predicting the details of the turbulent flow structure during the transition region

    A computational study of thrust augmenting ejectors based on a viscous-inviscid approach

    Get PDF
    A viscous-inviscid interaction technique is advocated as both an efficient and accurate means of predicting the performance of two-dimensional thrust augmenting ejectors. The flow field is subdivided into a viscous region that contains the turbulent jet and an inviscid region that contains the ambient fluid drawn into the device. The inviscid region is computed with a higher-order panel method, while an integral method is used for the description of the viscous part. The strong viscous-inviscid interaction present within the ejector is simulated in an iterative process where the two regions influence each other en route to a converged solution. The model is applied to a variety of parametric and optimization studies involving ejectors having either one or two primary jets. The effects of nozzle placement, inlet and diffuser shape, free stream speed, and ejector length are investigated. The inlet shape for single jet ejectors is optimized for various free stream speeds and Reynolds numbers. Optimal nozzle tilt and location are identified for various dual-ejector configurations

    Large-eddy simulation of a boundary layer with concave streamwise curvature

    Get PDF
    Turbulence modeling continues to be one of the most difficult problems in fluid mechanics. Existing prediction methods are well developed for certain classes of simple equilibrium flows, but are still not entirely satisfactory for a large category of complex non-equilibrium flows found in engineering practice. Direct and large-eddy simulation (LES) approaches have long been believed to have great potential for the accurate prediction of difficult turbulent flows, but the associated computational cost has been prohibitive for practical problems. This remains true for direct simulation but is no longer clear for large-eddy simulation. Advances in computer hardware, numerical methods, and subgrid-scale modeling have made it possible to conduct LES for flows or practical interest at Reynolds numbers in the range of laboratory experiments. The objective of this work is to apply ES and the dynamic subgrid-scale model to the flow of a boundary layer over a concave surface

    Large eddy simulation of a boundary layer with concave streamwise curvature

    Get PDF
    One of the most exciting recent developments in the field of large eddy simulation (LES) is the dynamic subgrid-scale model. The dynamic model concept is a general procedure for evaluating model constants by sampling a band of the smallest scales actually resolved in the simulation. To date, the procedure has been used primarily in conjunction with the Smagorinsky model. The dynamic procedure has the advantage that the value of the model constant need not be specified a priori, but rather is calculated as a function of space and time as the simulation progresses. This feature makes the dynamic model especially attractive for flows in complex geometries where it is difficult or impossible to calibrate model constants. The dynamic model was highly successful in benchmark tests involving homogeneous and channel flows. Having demonstrated the potential of the dynamic model in these simple flows, the overall direction of the LES effort at CTR shifted toward an evaluation of the model in more complex situations. The current test cases are basic engineering-type flows for which Reynolds averaged approaches were unable to model the turbulence to within engineering accuracy. Flows currently under investigation include a backward-facing step, wake behind a circular cylinder, airfoil at high angles of attack, separated flow in a diffuser, and boundary layer over a concave surface. Preliminary results from the backward-facing step and cylinder wake simulations are encouraging. Progress on the LES of a boundary layer on a concave surface is discussed. Although the geometry of a concave wall is not very complex, the boundary layer that develops on its surface is difficult to model due to the presence of streamwise Taylor-Gortler vortices. These vortices arise as a result of a centrifugal instability associated with the convex curvature

    Evaluation of a vortex-based subgrid stress model using DNS databases

    Get PDF
    The performance of a SubGrid Stress (SGS) model for Large-Eddy Simulation (LES) developed by Misra k Pullin (1996) is studied for forced and decaying isotropic turbulence on a 32(exp 3) grid. The physical viability of the model assumptions are tested using DNS databases. The results from LES of forced turbulence at Taylor Reynolds number R(sub (lambda)) approximately equals 90 are compared with filtered DNS fields. Probability density functions (pdfs) of the subgrid energy transfer, total dissipation, and the stretch of the subgrid vorticity by the resolved velocity-gradient tensor show reasonable agreement with the DNS data. The model is also tested in LES of decaying isotropic turbulence where it correctly predicts the decay rate and energy spectra measured by Comte-Bellot & Corrsin (1971)

    Parameterization of subgrid-scale stress by the velocity gradient tensor

    Get PDF
    The objective of this work is to construct and evaluate subgrid-scale models that depend on both the strain rate and the vorticity. This will be accomplished by first assuming that the subgrid-scale stress is a function of the strain and rotation rate tensors. Extensions of the Caley-Hamilton theorem can then be used to write the assumed functional dependence explicitly in the form of a tensor polynomial involving products of the strain and rotation rates. Finally, use of this explicit expression as a subgrid-scale model will be evaluated using direct numerical simulation data for homogeneous, isotropic turbulence

    A local dynamic model for large eddy simulation

    Get PDF
    The dynamic model is a method for computing the coefficient C in Smagorinsky's model for the subgrid-scale stress tensor as a function of position from the information already contained in the resolved velocity field rather than treating it as an adjustable parameter. A variational formulation of the dynamic model is described that removes the inconsistency associated with taking C out of the filtering operation. This model, however, is still unstable due to the negative eddy-viscosity. Next, three models are presented that are mathematically consistent as well as numerically stable. The first two are applicable to homogeneous flows and flows with at least one homogeneous direction, respectively, and are, in fact, a rigorous derivation of the ad hoc expressions used by previous authors. The third model in this set can be applied to arbitrary flows, and it is stable because the C it predicts is always positive. Finally, a model involving the subgrid-scale kinetic energy is presented which attempts to model backscatter. This last model has some desirable theoretical features. However, even though it gives results in LES that are qualitatively correct, it is outperformed by the simpler constrained variational models. It is suggested that one of the constrained variational models should be used for actual LES while theoretical investigation of the kinetic energy approach should be continued in an effort to improve its predictive power and to understand more about backscatter

    Self-Accleration and Instability of Gravity Wave Packets: 1. Effects of Temporal Localization

    Get PDF
    An anelastic numerical model is used to explore the dynamics accompanying the attainment of large amplitudes by gravity waves (GWs) that are localized in altitude and time. GW momentum transport induces mean flow variations accompanying a GW packet that grows exponentially with altitude, is localized in altitude, and induces significant GW phase speed, and phase, variations across the GW packet. These variations arise because the GW occupies the region undergoing accelerations, with the induced phase speed variations referred to as “self-acceleration.” Results presented here reveal that self-acceleration of a GW packet localized in time and altitude ultimately leads to stalling of the vertical propagation of the GW packet and accompanying two- and three-dimensional (2-D and 3-D) instabilities of the superposed GW and mean motion field. The altitudes at which these effects occur depend on the initial GW amplitude, intrinsic frequency, and degree of localization in time and altitude. Larger amplitudes and higher intrinsic frequencies yield strong self-acceleration effects at lower altitudes, while smaller amplitudes yield similar effects at higher altitudes, provided the Reynolds number, Re, is sufficiently large. Three-dimensional instabilities follow 2-D “self-acceleration instability” for sufficiently high Re. GW packets can also exhibit self-acceleration dynamics at more than one altitude because of continued growth of the GW packet leading edge above the previous self-acceleration event. --From the publisher\u27s website

    KOI-3890: A high mass-ratio asteroseismic red-giant++M-dwarf eclipsing binary undergoing heartbeat tidal interactions

    Get PDF
    KOI-3890 is a highly eccentric, 153-day period eclipsing, single-lined spectroscopic binary system containing a red-giant star showing solar-like oscillations alongside tidal interactions. The combination of transit photometry, radial velocity observations, and asteroseismology have enabled the detailed characterisation of both the red-giant primary and the M-dwarf companion, along with the tidal interaction and the geometry of the system. The stellar parameters of the red-giant primary are determined through the use of asteroseismology and grid-based modelling to give a mass and radius of M=1.04±0.06  MM_{\star}=1.04\pm0.06\;\textrm{M}_{\odot} and R=5.8±0.2  RR_{\star}=5.8\pm0.2\;\textrm{R}_{\odot} respectively. When combined with transit photometry the M-dwarf companion is found to have a mass and radius of Mc=0.23±0.01  MM_{\mathrm{c}}=0.23\pm0.01\;\textrm{M}_{\odot} and Rc=0.256±0.007  RR_{\mathrm{c}}=0.256\pm0.007\;\textrm{R}_{\odot}. Moreover, through asteroseismology we constrain the age of the system through the red-giant primary to be 9.11.7+2.4  Gyr9.1^{+2.4}_{-1.7}\;\mathrm{Gyr}. This provides a constraint on the age of the M-dwarf secondary, which is difficult to do for other M-dwarf binary systems. In addition, the asteroseismic analysis yields an estimate of the inclination angle of the rotation axis of the red-giant star of i=87.61.2+2.4i=87.6^{+2.4}_{-1.2} degrees. The obliquity of the system\textemdash the angle between the stellar rotation axis and the angle normal to the orbital plane\textemdash is also derived to give ψ=4.24.2+2.1\psi=4.2^{+2.1}_{-4.2} degrees showing that the system is consistent with alignment. We observe no radius inflation in the M-dwarf companion when compared to current low-mass stellar models.Comment: 11 pages, 5 figures, accepted for publication in MNRA
    corecore