National Aeronautics and
Space Administration
Ames Research Center

Stanford University

JIAA-TR-77

A COMPUTATIONAL STUDY OF THRUST AUGMENTING EJECTORS BASED ON A VISCOUS-INVISCID APPROACH

Thomas S. Lind, Domingo A. Tavella, and Leonard Roberts

Joint Institute for Aeronautics and Acoustics
Department of Aeronautics and Astronautics
Stanford University, Stanford, CA 94305

May 1987

JIAA-TR-77

A COMPUTATIONAL STUDY OF THRUST AUGMENTING EJECTORS BASED ON A VISCOUS-INVISCID APPROACH

Thomas S. Lund, Domingo A. Tavella, and Leonard Roberts

Joint Institute for Aeronautics and Acoustics
Department of Aeronautics and Astronautics
Stanford University, Stanford, CA 94305

May 1987

Abstract

Today's VSTOL aircraft designer is in need of an accurate theoretical model which can swiftly evaluate various ejector configurations. Previous attempts at developing such a model have been either over-simplified to the point of questionable accuracy, or so computationally expensive that optimization studies were not practical.

A viscous-inviscid interaction technique is advocated as both an efficient and accurate means of predicting the performance of two-dimensional thrust augmenting ejectors. The flow field is subdivided into a viscous region that contains the turbulent jet, and an inviscid region that contains the ambient fluid drawn into the device. The inviscid region is computed with a higher-order panel method, while an integral method is used for the description of the viscous part. The strong viscousinviscid interaction present within the ejector is simulated in an iterative process where the two regions influence each other en route to a converged solution. This formulation retains much of the essential physics of the problem, but at the same time requires only a small amount of computing effort.

The model is applied to a variety of parametric and optimization studies involving ejectors having either one or two primary jets. The effects of nozzle placement, inlet and diffuser shape, free stream speed, and ejector length are investigated. The inlet shape for single-jet ejectors is optimized for various free stream speeds and Reynolds numbers. Optimal nozzle location and tilt are identified for various dual-jet ejector configurations.

In all cases, it is found that the dual-jet ejector out performs its single-jet counterpart. This fact is attributed to enhanced mixing due to an increase in the effective ejector length.

Acknowledgements

This work was supported by NASA grants NCC 2-150 and NCC 2-390 and was monitored by Mr. David Koenig of the Large-Scale Aerodynamics Branch, NASAAmes Research Center.

Contents

Abstract iii
Acknowledgements v
Principal Symbols xi
1 Introduction 1
1.1 Fundamental Physics Underlying Thrust Augmentation 1
1.2 Application to VSTOL Aircraft Technology 3
1.3 Previous Work 4
1.4 Present Work 7
1.4.1 Theoretical Framework 8
1.5 Overview 9
2 Classical Analysis 11
2.1 Control Volume Analysis 11
2.2 Results 17
2.3 Conclusions 20
3 Viscous-Inviscid Approach 21
3.1 Previous Work 21
3.2 Ejector Problem 23
4 Inviscid Solution 27
4.1 Equations of Motion 27
4.2 Solution Alternatives 28
4.2.1 Conformal Mapping 28
4.2.2 Finite Difference Calculations 29
4.2.3 Panel Methods 29
4.3 Derivation of the Source-Panel Method 30
4.3.1 Green's Third Identity 30
4.3.2 Taylor Series Expansion of the Source Intensity and Surface Shape 33
4.3.3 Classical Panel Method 33
4.3.4 Higher Order Panel Method 34
4.3.5 Boundary Conditions 38
4.3.6 Surface Curvature Calculation 39
4.4 Inviscid Solution for the Single-Jet Ejector 40
4.5 Inviscid Solution for the Dual-Jet Ejector 42
5 Viscous Solution 45
5.1 Equations of Motion 45
5.2 Solution Alternatives 46
5.2.1 Similarity Solutions 46
5.2.2 Finite Difference Methods 47
5.2.3 Integral Methods 48
5.3 The Method of Weighted Residuals 49
5.4 Quasi Self-Preserving Velocity Profiles 55
5.5 Eddy Viscosity Hypothesis 57
5.6 Viscous Solution for the Single-Jet Ejector 58
5.6.1 Matching Region 59
5.6.2 Fully Viscous Region 61
5.7 Viscous Solution for the Dual-Jet Ejector 64
5.7.1 Matching Region 65
5.7.2 Fully Viscous Region 69
6 Viscous-Inviscid Matching Procedure 73
6.1 Iteration Scheme 73
6.2 Matching Procedure for the Single-Jet Ejector 75
6.2.1 Viscous-Inviscid Matching 75
6.2.2 Exit Pressure Matching 78
6.3 Matching Procedure for the Dual-Jet Ejector 80
6.3.1 Viscous-Inviscid Matching 80
6.3.2 Exit Pressure Matching 81
6.3.3 Determination of the Jet Trajectory 81
7 Results 85
7.1 Comparison With Experiment 85
7.1.1 Surface Pressure 86
7.1.2 Velocity Profile Evolution 88
7.1.3 Thrust Augmentation Ratio 89
7.2 Parametric Studies 89
7.2.1 Parameters Varied 90
7.2.2 Ejector Length 90
7.2.3 Longitudinal Nozzle Position 97
7.2.4 Lateral Nozzle Position for the Dual-Jet Ejector 99
7.2.5 Nozzle Tilt for the Dual-Jet Ejector 99
7.2.6 Free Stream Speed 102
7.2.7 Diffuser Length 102
7.2.8 Diffuser Angle 107
7.3 Optimization Studies 107
7.3.1 Single-Jet Ejector Optimization 110
7.3.2 Dual-jet Ejector Optimization 120
8 Conclusions and Recommendations 127
8.1 Summary 127
8.2 Conclusions of the Numerical Method 128
8.3 Conclusions of the Parametric Studies 128
8.4 Conclusions of the Optimization Studies 129
8.5 Recommendations 130
A Compressibility of the Secondary Flow 133
A. 1 Magnitude of the Leading Edge Suction 135
A. 2 Conditions for Effectively Incompressible Flow 137
A. 3 Conclusions 137
B Computer Code 141
B. 1 Single-Jet Program AUGMENT 141
B.1.1 Sample Input 146
B.1.2 Sample Output 146
B. 2 Dual-Jet Main Program DUOAUG 147
B.2.1 Sample Input 152
B.2.2 Sample Output 152
B. 3 Subroutine Libraries 153
B.3.1 Single-Jet Library AUGLIB 153
B.3.2 Dual-Jet Library TWINLIB 189
B.3.3 Panel Method Library PAN2LIB 226
B.3.4 Mathematics library MATHLIB 237
Bibliography 247

List of Figures

1.1 Thrust augmenting ejector concept 2
1.2 Ejector-fitted VSTOL aircraft 3
2.1 Ejector control volume schematic 13
2.2 Effects of the velocity skewness parameters 17
2.3 Effects of a diffuser 18
2.4 Effects of the free stream speed 19
3.1 Subdivision of the ejector flow field into viscous and inviscid zones 24
3.2 Viscous-inviscid interaction region 26
4.1 Higher order panel surface element 32
4.2 Panel geometry for the single-jet ejector 41
4.3 Panel geometry for the dual-jet ejector 43
5.1 Universal nature of the velocity profile 56
5.2 Velocity profile for the dual-jet ejector 65
6.1 Viscous-Inviscid interaction scheme. 74
6.2 Exit pressure matching. 76
6.3 Iteration scheme for the single-jet ejector 79
6.4 Iteration scheme for the dual-jet ejector 83
7.1 Experimental configuration 86
7.2 Surface pressure comparison 87
7.3 Comparison of the jet velocity profiles 88
7.4 Variation of ejector geometrical parameters 91
7.5 Effects of the ejector length 92
7.6 Effective ejector length for the dual-jet configuration 94
7.7 Comparison of the effective ejector concept with the computed results 95
7.8 An estimate of the effect of the lateral position of the primary nozzles 96
7.9 Effects of the longitudinal nozzle position 98
7.10 Effects of the lateral nozzle position for the dual-jet ejector 100
7.11 Effects of the nozzle tilt for the dual-jet ejector 101
7.12 Effects of the free stream speed 103
7.13 Effects of the diffuser length 104
7.14 Effects of the diffuser area ratio 106
7.15 Effects of the diffuser angle for constant diffuser length 108
7.16 Effects of the diffuser length for constant diffuser area ratio 109
7.17 Configuration for the ejector inlet optimization 110
7.18 Performance of the thrust augmentor with an optimized inlet 113
7.19 Optimal configurations at low and moderate Reynolds numbers 115
7.20 Optimal configurations at high Reynolds numbers 116
7.21 Optimal lip rotation angle as a function of Reynolds number 117
7.22 Optimal primary nozzle position as a function of Reynolds number 118
7.23 Optimal inlet lip length as a function of Reynolds number 119
7.24 Dual-jet ejector optimization 120
7.25 Lines of constant thrust augmentation for the unperturbed ejector 121
7.26 Lines of constant thrust augmentation for a shortened ejector 122
7.27 Lines of constant thrust augmentation for a moderate free stream speed 123
7.28 Lines of constant thrust augmentation for a moderate diffuser area ratio 124
7.29 Qualitative comparison with experiment for the Dual-jet ejector noz- zle position 126
A. 1 Ejector geometry and the principle of thrust augmentation. 134
A. 2 Magnitude of the shroud leading edge suction as a function of the jet exit Mach number136
A. 3 Boundary for the incompressible flow assumption 138

Principal Symbols

$a \quad$ Asymmetry factor in the dual-jet velocity profile
$b \quad$ Jet excess velocity half-width
$c_{j} \quad$ Velocity and pressure profile scale functions
$C_{p} \quad$ Pressure coefficient
d Ejector shroud thickness
$H \quad$ Half of the ejector channel width
$J \quad$ Primary jet momentum flux
$k \quad$ Eddy-viscosity scaling coefficient
$L \quad$ Ejector length
$L_{D} \quad$ Diffuser length
$M \quad$ Mach number
$n \quad$ Normal direction, normal coordinate
$p \quad$ Pressure
$P_{\text {atm }}$ Atmospheric pressure
$R \quad$ Radius of curvature
$R_{e} \quad$ Reynolds number
r Distance from the field point to the point of integration on the body surface
$s \quad$ Streamwise coordinate
$T_{0} \quad$ Primary jet thrust
$T_{i} \quad$ Induced thrust
$t \quad$ Half of the jet nozzle width
$u \quad$ Horizontal component of velocity, streamwise component of velocity
$u_{\infty} \quad$ Free stream velocity
v Vertical component of velocity, stream-normal component of velocity
W Half of the diffuser exit width
w_{i} Weighting functions
x Horizontal coordinate
x_{j} Horizontal location of the jet nozzle
y Vertical coordinate
y_{j} Vertical location of the jet nozzle
a Local surface angle, constant, jet tilt angle
β Diffuser angle
Γ Momentum equation operator
γ Free stream speed parameter
ϵ Residual error
ζ Non-dimensional normal coordinate in the curved jet velocity profile
$\eta \quad$ Non-dimensional vertical coordinate in the velocity profile
θ Inlet lip rotation angle
κ Surface curvature
Λ Momentum equation operator less the turbulent diffusion term
λ Velocity skewness parameter
μ Doublet strength
ν_{t} Eddy-viscosity coefficient
ξ Local coordinate tangent to the body surface
ρ Fluid density
σ Source strength
τ Turbulent shear stress
Φ Velocity potential
ϕ Thrust augmentation ratio, disturbance velocity potential
(~) Quantity computed in the local coordinate system
(•) Derivative
(") Second derivative
(^) Approximate profile
$\left(^{-}\right)$Quantity averaged across the ejector channel

Chapter 1

Introduction

1.1 Fundamental Physics Underlying Thrust Augmentation

A thrust augmenting ejector is a device capable of increasing the thrust produced by a propulsive jet nozzle through purely fluid mechanical means. The ejector consists of a high momentum primary jet that is exhausted into the confines of an aerodynamic shroud (see Figure 1.1). As the jet evolves, it entrains some of the ambient fluid contained within the ejector, thereby causing it to be swept downstream and through the ejector exit. The fluid lost to the jet entrainment is replaced by a secondary stream induced to flow in through the ejector inlet. As the secondary flow is accelerated around the leading edges of the ejector shroud, it lowers the local surface pressure in these regions. The resulting leading edge suctions create aerodynamic forces that have a large component in the direction of the primary nozzle thrust. These forces, together with the increased momentum flux of the primary nozzle due to the lowered pressure within the ejector, augment the force produced by the primary jet.

It is clear that the ability of the jet to entrain ambient fluid provides the mechanism of thrust augmentation. Most investigators refer to the effect of entrainment

Figure 1.1: Thrust augmenting ejector concept
as "mixing" since the primary and entrained secondary flow become indistinguishable at the ejector exit station. The mixing that takes place within the ejector is due to a complex, turbulent process. While little is known about the details of the mixing process, the consequences of mixing are well understood. Ejectors perform optimally when the mixing process uniformly distributes the excess energy of the primary jet such that the exiting flow is at a thermodynamic state midway between the primary and secondary streams. Although to approach this limit of complete mixing is the goal of all ejector designs, the current lack of theoretical understanding of the mixing process has led to many configurations that are far from optimal. Theoretical models that realistically predict the mixing process are required to aid in the design of optimal ejectors.

Figure 1.2: Ejector-fitted VSTOL aircraft

1.2 Application to VSTOL Aircraft Technology

The magnitude of the ejector effect is surprisingly large. Several investigators[1] have observed more than double the thrust produced by the primary jet alone. Because of its demonstrated potential as a thrust boosting device, the ejector has become an attractive component for advanced aerodynamics designs.

One important application of the thrust augmenting ejectors is found in vertical and short takeoff or landing (VSTOL) aircraft where there is a need for a large source of powered lift. In the ejector-powered vertical takeoff aircraft concept, the high pressure gas developed by the turbine engines is directed through a pair of ejectors mounted along the fuselage at the wing roots (see Figure 1.2). The ejectors boost the primary thrust to a level greater than the weight of the aircraft, thereby allowing it to rise vertically. Once sufficient altitude has been gained, the aircraft makes a conversion to forward flight by smoothly transferring the jet exhaust from the ejectors to the main horizontally thrusting nozzles. When the conversion is complete, the ejectors are covered over with movable doors to eliminate unnecessary drag. A vertical landing is achieved by repeating the takeoff procedure in reverse order.

1.3 Previous Work

Ejectors have been studied in connection with thrust augmentation since the mid 1920's. Today there exists a tremendous literature pertaining to ejector theory and performance. Comprehensive surveys of this work can be found in the review articles by Porter and Squyers[1] and Quinn[2]. The article by Porter and Squyers lists more than 1600 references. As a small subset of these, a selected number of important theoretical works are highlighted in this section.

The first theoretical study of ejectors was a control volume analysis given by von Karman[3]. In that analysis and those that followed[4,5,6] the ejector was treated as a black box where the conservation laws were required to hold only in a global sense between the entrance and exit stations. These control volume analyses have been quite useful in illustrating the importance of complete mixing as well as establishing theoretical limits to the maximum possible thrust augmentation.

In the control volume approach, the details of the ejector mixing process are collapsed into a single mixing efficiency parameter. This step allows simple analytic expressions for the thrust augmentation ratio to be determined. Unfortunately, the resulting expressions contain the mixing efficiency parameter as an unknown quantity. Most investigators have accepted this fact and have simply plotted performance curves with the mixing efficiency appearing as an undetermined parameter. In spite of the inability to connect the mixing efficiency to a particular ejector configuration, the control volume analyses are still useful in quantifying the importance of the degree of mixing. In addition, theoretical limits on the maximum possible thrust augmentation are established through the analyses by letting the mixing efficiency approach unity.

Without the ability to predict the ejector mixing process, the control volume analysis alone is not a powerful enough method to be used in conjunction with ejector design. The analysis can be supplemented with empirical information concerning the mixing efficiency, but this would require perhaps dubious extrapolations of the experimental data to investigate designs outside of the existing data base. A better alternative is to supplement the control volume analysis with a realistic
theoretical model of the turbulent mixing process.
Much of the recent effort in ejector development has focused on developing realistic theoretical models of the mixing process. The basic approach in many contemporary works is to incorporate a turbulence model in the approximate solution to the Navier-Stokes equations which govern the ejector flow. If the turbulence model is reliable, the numerical simulations are able to predict the performance of an arbitrary ejector configuration. It is therefore possible to use these techniques to aid in ejector design.

A few investigators have attempted to model the ejector mixing process through a direct finite difference solution to the Navier-Stokes equations $[7,8]$. While the results have been encouraging, there is a practical problem in that these solutions require enormous amounts of computing time, even on the fastest class of computers. A single thin-layer Navier-Stokes calculation performed by Lasinski et al. [8], for example, took on the order of ten hours of processor time on a CDC 7600 machine. This sort of demand for computational power makes a full Navier Stokes simulation impractical for ejector design studies where hundreds of different configurations must be evaluated.

An alternative solution technique, known as the viscous-inviscid matching procedure, was first applied to the ejector mixing problem by Bevilaqua [9]. By making approximations locally and incorporating some of the known properties of jets, Bevilaqua was able to dramatically reduce the computational effort needed to model the ejector mixing process. Later improvements and extensions of this idea by Bevilaqua[10,11], Tavella[12,13], and Lund[14] have increased the accuracy and usefulness of the viscous-inviscid technique.

In the viscous-inviscid method, the flow field is divided into two separate regions. The turbulent flow consisting of the primary jet and mixed flow make up the viscous region, while the secondary, mainly irrotational flow makes up the inviscid region. Independent approximations are made in each region to simplify the problem while still resolving the important flow physics. The two regions are solved simultaneously in an iterative process that simulates the interaction between the jet and the ambient fluid. When the process converges, the flow variables are continuous at the juncture
between the viscous and inviscid zones.
The efficient nature of the viscous-inviscid technique is attributed to its ability to utilize different approximations within the viscous and inviscid regions. The viscous-inviscid models developed to date have treated the inviscid region within a potential flow framework, and the viscous flow under a thin shear layer assumption. These are good local approximations that lead to a pair of relatively simple problems for which efficient solution techniques exist. The need to iterate between the two solutions does not become a great concern since each of the individual solution procedures are orders of magnitude more efficient than a Navier-Stokes solution.

Bevilaqua's original viscous-inviscid model[9] did not resolve the entire inviscid portion of the flow. In this first model, the inviscid secondary flow was assumed to be uniform at the ejector inlet station. Bevilaqua furthermore assumed that the jet could be modeled with a self-similar solution. These assumptions led to an extremely streamlined solution procedure that only required marching an initial value problem with a single unknown.

While the validity of the uniform secondary flow assumption as well as the selfsimilar jet solution could be disputed, Bevilaqua's original viscous-inviscid model illustrated a concept that could easily be improved to simulate the ejector flow field more accurately. In his two later works $[10,11]$, Bevilaqua improved his original model by fully resolving the secondary flow with a combined panel/vortex lattice technique. The jet model was also improved by replacing the self-similar solution with a finite difference solution to the thin shear layer equations. These improved models were used successfully to predict the behavior of the ejector performance as a limited number of geometrical parameters were varied.

While Bevilaqua's improved viscous-inviscid technique represented the ejector flow physics quite realistically, the use of a finite difference solution in the viscous region reduced the overall efficiency of the method. In an effort to regain some of the lost efficiency while still maintaining an accurate solution, Tavella[12] developed an integral method for the viscous portion of the flow field. By making some reasonable assumptions regarding the shape of the velocity profile, Tavella was able to formulate a method that could generate essentially the same information as the
finite difference calculation at a small fraction of the computational time. In a later work[13], Tavella combined his integral method with a conformal mapping solution for the inviscid flow. The resulting algorithm was nearly as efficient as Bevilaqua's original work, but produced a more realistic simulation of the ejector flow field.

One criticism of Tavella's viscous-inviscid model is that the conformal mapping technique used for the inviscid flow imposed a practical limitation on the shape of the ejector shroud. The method was restricted to shrouds that could be described by small perturbations to flat plates. An additional shortcoming of Tavella's model (and Bevilaqua's later models) was that the thickness of the jet was ignored in the inviscid solution. In both Tavella's and Bevilaqua's models, the jet was treated as a line of sinks along the ejector centerline, whose strengths were determined from the entrainment predicted by the viscous jet calculation. Accordingly, the flow variables were matched at the ejector channel centerline and not the viscous-inviscid interface.

1.4 Present Work

The objective of the present work is to improve upon the existing viscous-inviscid matching techniques in order to create an accurate and robust model that is efficient enough to be used as an ejector design tool. The improvements entail both a synthesis and extension of the existing methods. These may be summarized as follows:

1. Use a higher-order panel method for the inviscid flow so that arbitrary shroud shapes can be studied.
2. Combine the higher-order panel method with the integral method of solution for the viscous flow.
3. Take the jet thickness into account in the inviscid solution and thereby match the flow variables at the viscous-inviscid boundary as opposed to the ejector channel centerline.
4. Extend the integral method for the case of an ejector with two primary jets.
5. Develop a second complete viscous-inviscid model for a dual-jet ejector.

A secondary objective of this work is to use the improved viscous-inviscid models to learn more about the performance characteristics of ejectors. In particular the aim is to:

1. Quantify the impact on performance when several ejector geometrical parameters are systematically varied.
2. Quantitatively compare the performance of a dual-jet ejector with a single-jet ejector for a large range of configurations and operating conditions.
3. Use the models in some practical design problems to optimize the geometry for several different operating conditions.

1.4.1 Theoretical Framework

In the present work, several simplifying assumptions are made at the outset. These assumptions are designed to limit the scope of the problem while not being so restrictive that the analysis is of limited value. The assumptions may be listed as follows:

1. The mean flow is assumed to be steady.
2. The flow is assumed to be two-dimensional.
3. The flow is assumed to be incompressible.

The first assumption limits the analysis to steady flow ejectors. Most ejector designs are of this type, even though pulsed flow ejectors $[15,16,17]$ have shown to produce more efficient mixing.

In the second assumption, the ejector flow field is idealized as being two-dimensional. This assumption is a reasonable approximation since many ejector designs have moderately large aspect ratios. Excluding the end regions, the bulk of the flow in real ejectors should behave as if it were two-dimensional. The three-dimensional effects that occur in the corner regions almost always lower the ejector performance.

Hence, the two-dimensional calculations can be considered to be an upper bound for the performance values that will be found in practice.

The third assumption limits the analysis to incompressible flow. This assumption is perhaps the most restrictive, since most of the modern ejectors are designed to operate with primary jet exit Mach numbers high enough to induce compressibility effects. The incompressible flow assumption can be viewed as a simplification necessary to limit the scope of the analysis in the first step towards producing a general, efficient ejector model. Once a methodology is established and tested for incompressible flow, it should be relatively simple to extend the model to include compressibility effects. In any event, the results of the present analysis are expected to produce a reasonable estimate of ejector performance for moderate primary jet Mach numbers. A more precise analysis of the applicability of the present model to compressible flows is given in Appendix A.

1.5 Overview

The thesis is divided into eight chapters. Chapter 2 introduces a control volume analysis that illustrates some of the basic properties of ejectors. Chapter 3 discusses the viscous-inviscid approach as it applies to the ejector problem. In Chapter 4 the higher-order panel method used for the inviscid solution is presented. Chapter 5 contains a derivation of the integral methods for both single and dual-jet ejectors. The matching procedure used to drive the iteration between the viscous and inviscid solutions is presented in Chapter 6. Chapter 7 contains the results of both the parametric and optimization studies. Finally, a summary and some of the major conclusions are listed in Chapter 8.

Chapter 2

Classical Analysis

Theoretical analyses of ejectors can be grouped into two categories: (1) approximate solutions to the equations of motion and (2) control volume analysis. In the first of these two categories, the flow variables are determined at each point within the ejector by employing a numerical technique to solve the appropriate equations of motion. This type of analysis resolves the details of the mixing process and can therefore be used to learn more about the physics of thrust augmentation. Although the numerical simulation approach yields a wealth of information about the ejector flow field, it is difficult to implement. The control volume approach, on the other hand, is easy to implement and gives analytical results that provide some useful information about the global properties of ejectors. Before the advent of computers, control volume approaches were used almost exclusively to analyze ejectors. Today, the results of these classical analyses are still useful in validating modern numerical simulations. A control volume analysis is presented here to provide some insight to the properties of ejectors and to be used later to support the results of the viscous-inviscid numerical simulation.

2.1 Control Volume Analysis

In the control volume approach the ejector is treated at a black box where conservation of mass, momentum, and energy are required to hold only between the inlet
and exit stations. Global quantities such as the thrust augmentation ratio are determined without regard to the details of the mixing taking place within the ejector. The analysis is incomplete in this regard, and the degree of mixing is input as a known parameter. In spite of the need to specify a measure of mixing efficiency, the control volume analysis can show how the inlet velocity non-uniformity, free stream speed, and the addition of a diffuser affect the thrust augmentation ratio.

Control volume approaches have been widely used in the past. The original paper by von Karman[3] for incompressible flow ejectors without diffusers has been followed by several extensions to compressible flow, diffusers, and forward speed[4,5,6]. In this chapter the existing results are unified into a single analysis valid for incompressible flow.

Control volume analyses require the mixing process to take place either at constant pressure or for constant area. The analysis which is given here is for constant area mixing. The flow is also assumed to be incompressible and one-dimensional.

The equations of motion for incompressible flow are

$$
\begin{gather*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \tag{2.1}\\
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+\frac{1}{\rho} \frac{\partial p}{\partial x}=\frac{1}{\rho} \frac{\partial \tau}{\partial y} \tag{2.2}
\end{gather*}
$$

where τ is the turbulent shear stress. The continuity equation is used to rewrite the momentum equation as

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(u^{2}+\frac{1}{\rho} p\right)+\frac{\partial u v}{\partial y}=\frac{1}{\rho} \frac{\partial \tau}{\partial y} \tag{2.3}
\end{equation*}
$$

Equations (2.1) and (2.3) are now integrated across the ejector channel of constant half-width H. The configurations are assumed to be symmetric so that it is sufficient to consider only the upper half-plane.

$$
\begin{align*}
\frac{\partial}{\partial x} \int_{0}^{H} u d y+v(H)-v(0) & =0 \tag{2.4}\\
\frac{\partial}{\partial x} \int_{0}^{H}\left(u^{2}+\frac{1}{\rho} p\right) d y+u(H) v(H)-u(0) v(0) & =\frac{1}{\rho}(\tau(H)-\tau(0)) \tag{2.5}
\end{align*}
$$

Figure 2.1: Ejector control volume schematic
At the channel centerline, both the vertical component of velocity v and the shear stress τ vanish by symmetry. At the channel wall, the v component of velocity again vanishes and the shear stress may be neglected (the skin friction may be incorporated later through an appropriate loss factor). With these ideas the conservation integrals become

$$
\begin{gather*}
\int_{0}^{H} u d y=\text { const } \tag{2.6}\\
\int_{0}^{H}\left(u^{2}+\frac{1}{\rho} p\right) d y=\mathrm{const} \tag{2.7}
\end{gather*}
$$

Consider the schematic of the ejector shown in Figure 2.1. The conservation integrals are applied between stations 0 and 2 to give

$$
\begin{align*}
\int_{0}^{t} u_{1} d y+\int_{t}^{H} u_{0} d y & =\int_{0}^{H} u_{2} d y \tag{2.8}\\
\int_{0}^{t} u_{1}^{2} d y+\int_{t}^{H} u_{0}^{2} d y+\int_{0}^{H} \frac{1}{\rho} p_{0} d y & =\int_{0}^{H} u_{2}^{2} d y+\int_{0}^{H} \frac{1}{\rho} p_{2} d y \tag{2.9}
\end{align*}
$$

Define the average properties

$$
\begin{equation*}
\bar{u}=\frac{1}{H} \int_{0}^{H} u d y \tag{2.10}
\end{equation*}
$$

$$
\begin{equation*}
\bar{p}=\frac{1}{H} \int_{0}^{H} p d y \tag{2.11}
\end{equation*}
$$

and the velocity skewness parameter

$$
\begin{equation*}
\lambda=\frac{\frac{1}{H} \int_{0}^{H} u^{2} d y}{\left[\frac{1}{H} \int_{0}^{H} u d y\right]^{2}} \tag{2.12}
\end{equation*}
$$

The velocity skewness parameter can be found in many of the previous control volume approaches $[3,6,5]$. It provides a measure of the flow non-uniformity. A uniform flow has a skewness value of 1 , while increasingly non-uniform flows have higher values of the skewness parameter. In physical terms, the skewness parameter for incompressible flow is proportional to the ratio of the momentum flux to the square of the mass flux. Thus a flow with a skewness factor greater than unity contains more momentum than does a uniform flow with the same mass flux.

Using the above definitions, Eqs. (2.8) and (2.9) may be written in terms of the averaged quantities

$$
\begin{gather*}
\bar{u}_{1} \frac{t}{H}+\left(1-\frac{t}{H}\right) \bar{u}_{0}=\bar{u}_{2} \tag{2.13}\\
\lambda_{1} \bar{u}_{1}^{2} \frac{t}{H}+\left(1-\frac{t}{H}\right) \lambda_{0} \bar{u}_{0}^{2}+\left(1-\frac{t}{H}\right) \frac{1}{\rho} \bar{p}_{0}=\lambda_{2} \bar{u}_{2}^{2}+\frac{1}{\rho} \bar{p}_{2} \tag{2.14}
\end{gather*}
$$

As an approximation, the primary nozzle is modeled as a point source of momentum. That is, the dimension of the nozzle is allowed to become arbitrarily small while the momentum flux is held fixed. The exit velocity is required to be unbounded in this instance in such a way that the nozzle is a singular point of finite momentum flux but with no associated mass flux.

The point source approximation is introduced by letting $\frac{t}{H} \rightarrow 0$ while $\bar{u}_{1} \rightarrow \infty$ such that $\lambda_{1} \bar{u}_{1}^{2} \frac{t}{H} \rightarrow T_{0} / \rho H$. Then the above equations become

$$
\begin{gather*}
\bar{u}_{0}=\bar{u}_{2} \tag{2.15}\\
\frac{T_{0}}{\rho H}+\lambda_{0} \bar{u}_{0}^{2}+\frac{1}{\rho} \bar{p}_{0}=\lambda_{2} \bar{u}_{2}^{2}+\frac{1}{\rho} \bar{p}_{2} \tag{2.16}
\end{gather*}
$$

Bernoulli's equation is averaged across the channel to give

$$
\begin{equation*}
\bar{p}=\bar{p}_{T}-1 / 2 \rho\left(\lambda \bar{u}^{2}-u_{\infty}^{2}\right) \tag{2.17}
\end{equation*}
$$

Assume that only a negligible amount of mixing takes place in the diffuser. Under this assumption, the flow between stations 2 and 3 is isentropic. The Bernoulli equation can therefore be applied between these two stations to give

$$
\begin{equation*}
\bar{p}_{2}-\bar{p}_{3}=-1 / 2 \rho\left(\lambda_{2} \bar{u}_{2}^{2}-\lambda_{3} \bar{u}_{3}^{2}\right) \tag{2.18}
\end{equation*}
$$

The exit pressure must be equal to the atmospheric value. Thus $\bar{p}_{3}=p_{\text {atm }}$. Conservation of mass requires $\bar{u}_{3}=(H / W) \bar{u}_{2}$. The skewness factors λ_{2} and λ_{3} are equal since the process is isentropic. Making use of these results, the above equation becomes

$$
\begin{equation*}
\bar{p}_{2}-p_{a t m}=-1 / 2 \rho \lambda_{2} \bar{u}_{2}^{2}\left[1-\left(\frac{H}{W}\right)^{2}\right] \tag{2.19}
\end{equation*}
$$

Bernoulli's equation may also be applied to the inviscid portion of the inlet flow to give

$$
\begin{equation*}
\bar{p}_{0}-p_{a t m}=-1 / 2 \rho\left(\lambda_{0} \bar{u}_{0}^{2}-u_{\infty}^{2}\right) \tag{2.20}
\end{equation*}
$$

Equations (2.15), (2.16), (2.19), and (2.20) are now combined to yield

$$
\begin{equation*}
\left(\frac{\bar{u}_{2}}{u_{\infty}}\right)^{2}=\frac{2+\gamma^{2}}{\gamma^{2} \lambda_{2}\left[1+\left(\frac{H}{W}\right)^{2}-\frac{\lambda_{0}}{\lambda_{2}}\right]} \tag{2.21}
\end{equation*}
$$

where a measure of the free stream speed, γ, is defined as

$$
\begin{equation*}
\gamma^{2}=\frac{\rho u_{\infty}^{2} H}{T_{0}} \tag{2.22}
\end{equation*}
$$

The thrust augmentation ratio is defined as

$$
\begin{equation*}
\phi=\frac{\int_{0}^{W} u_{3}\left(u_{3}-u_{\infty}\right) d y}{\int_{0}^{t} u_{1}\left(u_{1}-u_{\infty}\right) d y} \tag{2.23}
\end{equation*}
$$

As before, let $\frac{t}{H} \rightarrow 0$. Then the above equation may be written as

$$
\begin{equation*}
\phi=\frac{\left(\lambda_{3} \bar{u}_{3}^{2}-u_{\infty} \bar{u}_{3}\right) \frac{W}{H}}{\frac{T_{0}}{\rho H}} \tag{2.24}
\end{equation*}
$$

Again assume $\lambda_{3}=\lambda_{2}$. Then using the mass conservation relation, $\bar{u}_{3}=(H / W) \bar{u}_{2}$, as well as the definition of the free speed parameter given in Eq. (2.22), the above relation becomes

$$
\begin{equation*}
\phi=\gamma^{2}\left[\lambda_{2}\left(\frac{\bar{u}_{2}}{u_{\infty}}\right)^{2} \frac{W}{H}-\left(\frac{\bar{u}_{2}}{u_{\infty}}\right)\right] \tag{2.25}
\end{equation*}
$$

Equation (2.21) is used to give the final result

$$
\begin{equation*}
\phi=\frac{2+\gamma^{2}}{\left[1+\left(\frac{H}{W}\right)^{2}-\frac{\lambda_{0}}{\lambda_{2}}\right]} \frac{H}{W}-\gamma \sqrt{\frac{2+\gamma^{2}}{\lambda_{2}\left[1+\left(\frac{H}{W}\right)^{2}-\frac{\lambda_{0}}{\lambda_{2}}\right]}} \tag{2.26}
\end{equation*}
$$

The velocity skewness parameters λ_{0} and λ_{2} can not be determined by the control volume analysis. The skewness parameter λ_{0} represents the non-uniformity of the secondary flow. In many cases the secondary flow is nearly uniform and $\lambda_{0} \simeq 1$. The skewness parameter λ_{2} represents the degree of mixing of the primary and secondary streams within the constant area portion of the ejector channel. A value of $\lambda_{2}=1$ represents complete mixing where the flow exiting from the ejector is uniform and is at a thermodynamic state midway between the primary and secondary streams. Values of λ_{2} are typically larger than 1.2 . It is observed experimentally that λ_{2} varies inversely with the ejector length. This is due to the fact that a longer ejector gives the flow more time to mix. The use of multiple primary jets or hypermixing nozzles should therefore also reduce λ_{2}.

Without prior knowledge of the velocity skewness factors, the control volume analysis can not be used to predict the performance of a particular configuration. The analysis is still useful, however, since it can be used to show how the performance will vary with these parameters. In addition, the effects of the free stream speed as well as the effects of a diffuser may be investigated. It is most instructive to isolate three special cases. These are:

1. Effects of the velocity skewness parameters; given $\gamma=0, \frac{H}{W}=1$:

$$
\begin{equation*}
\phi=\frac{2}{2-\frac{\lambda_{0}}{\lambda_{2}}} \tag{2.27}
\end{equation*}
$$

2. Effects of a diffuser; given $\gamma=0, \lambda_{0}=1$:

$$
\begin{equation*}
\phi=\frac{2 \frac{W}{H}}{1+\left(\frac{W}{H}\right)^{2}\left[1-\frac{1}{\lambda_{2}}\right]} \tag{2.28}
\end{equation*}
$$

3. Effects of a free stream; given $\frac{H}{W}=1, \lambda_{0}=1$:

$$
\begin{equation*}
\phi=\frac{2+\gamma^{2}}{2-\frac{1}{\lambda_{2}}}-\gamma \sqrt{\frac{2+\gamma^{2}}{\lambda_{2}\left(2-\frac{1}{\lambda_{2}}\right)}} \tag{2.29}
\end{equation*}
$$

Figure 2.2: Effects of the velocity skewness parameters. $\gamma=0, \frac{H}{W}=1$.

2.2 Results

The effects of the velocity skewness parameters are shown in Figure 2.2, where Eq. (2.27) is plotted. As anticipated, the performance decreases with increasing λ_{2}. The performance is seen to increase with increasing λ_{0}. Thus the ejector performs better if the secondary flow is other than uniform. Showing that this is the case was the intent of von Karman's original paper[3]. Note that for nearly complete mixing ($\lambda_{2}=1$), the performance is significantly improved by secondary flow non-uniformity. As the mixing efficiency drops ($\lambda_{2}>1$), the secondary flow non-uniformity has a smaller impact on the performance. In summary, it is best

Figure 2.3: Effects of a diffuser. $\gamma=0, \lambda_{0}=1$
to have a high degree of non-uniformity at the ejector inlet and nearly uniform conditions at the ejector exit.

The effects of a diffuser predicted by Eq. (2.28) are shown in Figure 2.3. It is evident that a diffuser is most beneficial if the flow entering the diffuser is close to being completely mixed (λ_{2} near 1). The advantage of having the flow more nearly mixed is increasingly pronounced as the diffuser area ratio becomes large. This is an important result since it shows that ejectors that employ multiple primary jets or hypermixing nozzles in an effort to enhance the mixing process will benefit most from the addition of a diffuser.

Note that for each exit velocity skewness parameter, there is an optimal diffuser

Figure 2.4: Effects of the free stream speed. $\frac{H}{W}=1, \lambda_{0}=1$
area ratio. At this point the pressure drag associated with the diffuser starts to outweigh the increase in performance due to the lowered inlet pressure. The optimal diffuser area ratio is found from Eq. (2.28) to be

$$
\begin{equation*}
\left(\frac{W}{H}\right)_{\max }=\frac{1}{\sqrt{1-\frac{1}{\lambda_{2}}}} \tag{2.30}
\end{equation*}
$$

In summary, the performance of an ejector with a diffuser is again best when the exiting flow is nearly mixed.

The effects of the free stream speed predicted by Eq. (2.29) are shown in Figure 2.4. The performance decreases monotonically with increasing free stream speed as
a result of increasing ram drag. As in the other cases, the performance is always best when λ_{2} is close to 1 .

2.3 Conclusions

The control volume analysis has produced several interesting results. The analysis showed that the performance is always best as λ_{2} approaches unity and as λ_{0} departs from unity. It was shown that an optimal diffuser area ratio exists for each value of λ_{2}. The performance was also shown to decrease with the free stream speed parameter γ.

While these results are both interesting and instructive, they are limited by the need to prescribe the degree of mixing through the parameter λ_{2}. Because of this limitation, it is not possible to use the control volume analysis to predict the performance of a particular configuration. Since the focus of this work is to develop a model capable of such predictions, the control volume analysis must be supplemented with a realistic model of the ejector mixing process. The next several chapters describe a numerical simulation technique that is developed to provide the information necessary to determine the degree of mixing achieved by any given ejector configuration.

Chapter 3

Viscous-Inviscid Approach

In the viscous-inviscid approach, the field is divided into two separate regions or "zones" that contain flows of differing character. Regions of the flow that are not affected by viscous or turbulent stresses comprise the inviscid zone, while regions that contain significant fluid shear, such as boundary layers, jets, and wakes make up the viscous zone. Approximations are made independently in each zone to simplify the problem while still resolving the important flow characteristics. The independent approximations lead to two different sets of simplified equations, each of which is valid only in its respective region. The two zones are solved simultaneously in an iterative matching process which assures that the solution is continuous at the zonal interface. The converged solution is identical to a solution produced by a single set of equations that are valid for the whole domain, but is produced with a fraction of the computational effort.

3.1 Previous Work

The viscous-inviscid technique has been successfully used in the past to solve a variety of complex flows. Boundary layers which develop in turbomachinery [18,19], and wing-body junctures $[20,21,22]$ have been treated with the viscous-inviscid method, as have flows involving shock-boundary layer interactions[23,24,25]. A large body of literature exists for viscous-inviscid methods applied to separated regions in both
steady $[26,27,28,29,30,31,32]$ and unsteady $[33,34,35]$ flows. Confined jets and thrust augmentor configurations have also been modeled with these methods $[9,10,12,13]$.

Perhaps the most familiar application of the viscous-inviscid method is the usual procedure for calculating boundary layers in aerodynamic flows. In an airfoil problem, the viscous zone is made up of a thin layer near the surface, while the inviscid zone covers the rest of the field. Typically, a potential flow method is used for the inviscid zone, while von Karman's integral method is used in the viscous zone. The inviscid solution provides the surface pressure distribution needed as a boundary condition to solve the boundary layer equations. The effect of the viscous region on the inviscid flow is then taken into account by increasing the thickness of the airfoil to simulate the displacement effect of the boundary layer. The thickness correction allows an improved inviscid solution to be generated. The new pressure distribution can then be used to compute yet another viscous flow, and so on. In principle, the cycle can be repeated until some desired degree of convergence is obtained. In practice, the interaction between the boundary layer on an airfoil and the surrounding inviscid stream is weak enough that only one iteration is needed to accurately match the two solutions. Other viscous-inviscid problems, such as a boundary layer with a separation bubble, involve a higher degree of interaction, and several cycles are necessary in order to match the solutions together.

The most attractive feature of the viscous-inviscid procedure is that it gives an accurate solution at a very modest computational cost. This advantage is attributed to the ability to solve a different set of equations in each of the two zones. Approximations are made locally, so that negligible terms are pruned where they are not needed. For example, in the viscous zone of the airfoil problem, streamwise diffusion is neglected and the velocity normal to the surface is assumed to be of higher order. These assumptions reduce the Navier-Stokes equations to the boundary layer equations. Being parabolic, the boundary layer equations are much easier to solve than the elliptic Navier-Stokes equations. The flow outside of the airfoil boundary layer is assumed to be inviscid and, if there are no strong shocks, irrotational. For purely subsonic flow, these assumptions allow the Navier-Stokes equations to be reduced to Laplaces equation, which again is much easier to solve
than the Navier-Stokes equations. Thus, the viscous-inviscid formulation reduces the problem of solving the Navier-Stokes over the entire domain to that of solving two much simpler problems. The price for making this simplification is that the two solutions must be iteratively matched together. This is not a great concern, however, since convergence is often obtained in a few cycles, and the entire matching process is still significantly faster than solving the Navier-Stokes equations.

A further advantage of the zonal approach is that it is many times easier to implement. In some cases, one portion of the flow field may be simple enough to be described by an analytic solution. The other region may require a numerical solution, but the two may still be matched together to give the desired result. In other cases, only one portion of the flow field may need a computational grid. This can eliminate problems associated with generating a grid to fit a complicated geometry.

3.2 Ejector Problem

The viscous-inviscid approach is a natural choice for an ejector flow field since it contains well-defined regions of viscous and inviscid flow. The entrained secondary flow forms the inviscid zone, while the turbulent jet and boundary layers on the shroud walls form the viscous zone. Figure 3.1 shows how the ejector flow field is subdivided. The inviscid zone contains the ambient fluid that is drawn into the device. Inviscid flow exists inside a portion of the inlet between the jet and the channel wall. The viscous region originates at the jet nozzle and grows at a linear rate to simulate the spreading of the jet. The viscous zone completely fills the channel downstream of the point at which the jet first strikes the wall. The wake formed by the mixed flow which leaves the thrust augmentor exit is also part of the viscous zone, but it is ignored since calculations have shown [36] that it exerts a negligible effect on the mixing taking place within the channel.

The flow within the inviscid zone is also assumed to be irrotational and thus the solution can be generated under a potential flow framework. The flow is further assumed to be incompressible. A higher-order panel method is used as an efficient

Figure 3.1: Subdivision of the ejector flow field into viscous and inviscid zones
means to produce accurate solutions for arbitrary shroud shapes. The effect of the jet entrainment on the inviscid field is simulated by applying suction to the panels which cover the jet boundary. The panel method is desirable since it does not require the use of a computational grid nor any iteration. The solution is formed by constructing and inverting a moderately sized matrix. The panel method has the added advantage that the panel suction boundary conditions only appear on the right hand side of the matrix equation. Thus, during the viscous-inviscid matching process, the matrix only needs to be calculated and inverted once. With each change in the jet entrainment distribution, the new inviscid solution is found through a simple matrix-vector multiply.

In the viscous region composed of the turbulent jet, streamwise diffusion is neglected, and thus the thin shear layer equations are used. These equations are solved in an integral formulation using the method of weighted residuals. In the integral formulation, the solution is efficiently obtained by assuming the form of the jet velocity profile. The velocity profile is made flexible by incorporating the secondary velocity, centerline velocity, and the jet growth rate as undetermined functions of the streamwise coordinate. The weighted residual procedure is applied to minimize the error introduced by the velocity profile assumption. This operation produces a set of first order differential equations for the functions that specify the velocity profile. The differential equations are integrated by marching downstream from the jet nozzle.

The viscous-inviscid procedure requires an iterative process to match the two zones together. To help understand the iteration process, the thrust augmentor is divided into two regions as shown in figure 3.2. In region 1 , the jet merges with the co-flowing inviscid flow. This area is referred to as the interaction region since the viscous and inviscid flows are influencing each other here. Within this region the two solutions are matched together by iterating between the jet entrainment and the inviscid pressure distribution. In region 2, the turbulent zone completely fills the channel. In this region, the viscous flow is no longer influenced by the inviscid flow and no matching is needed.

The inviscid secondary flow present in the interaction region is produced by

Figure 3.2: Viscous-inviscid interaction region. The viscous and inviscid flows are matched in region 1 . In region 2 only the viscous equations are solved.
the jet entrainment. The secondary flow, in turn, influences the growth of the jet by imposing a pressure gradient and by reducing the rate of shear where the jet meets the ambient fluid. This coupling between the jet and secondary flow is simulated during the matching process. The inviscid solution provides the pressure gradient needed as a boundary condition to compute the viscous flow. The viscous solution is then used to produce a new distribution of jet entrainment. The panel suction velocities are updated and an improved inviscid solution is calculated. This procedure is continued until changes to the panel suction velocities are negligible.

Chapter 4

Inviscid Solution

4.1 Equations of Motion

The inviscid flow is assumed to be irrotational. The kinematics of the flow are then such that the velocity field may be described as the gradient of a scalar potential

$$
\begin{equation*}
\vec{U}=\nabla \Phi \tag{4.1}
\end{equation*}
$$

If the above expression is substituted into the incompressible continuity relation

$$
\begin{equation*}
\nabla \cdot U=0 \tag{4.2}
\end{equation*}
$$

it is found that the velocity potential satisfies Laplace's equation

$$
\begin{equation*}
\nabla^{2} \Phi=0 \tag{4.3}
\end{equation*}
$$

An integral of the momentum equation for constant density gives the Bernoulli equation, which relates the pressure to the velocity field

$$
\begin{equation*}
p+1 / 2 \rho U^{2}=\text { const } \tag{4.4}
\end{equation*}
$$

Since Laplace's equation (and boundary conditions) are linear, solutions may be superimposed. Making use of this fact, the velocity potential is split into two parts; one corresponding to the free stream and another corresponding to the disturbance created by the body. Accordingly, The velocity potential is written as

$$
\begin{equation*}
\Phi=\phi_{\infty}+\phi \tag{4.5}
\end{equation*}
$$

Under this formulation the velocity may be expressed as

$$
\begin{equation*}
\vec{U}=\vec{V}_{\infty}+\vec{V} \tag{4.6}
\end{equation*}
$$

Since the potential due to the free stream is known, the problem involves finding the disturbance potential due to the presence of the body. The disturbance potential is not considered to be small as in thin airfoil theory. In the present work the potential is split into two parts for convenience, not for the purpose of linearization.

4.2 Solution Alternatives

While several methods are available for solving Laplace's equation, three of these should be given special consideration for the ejector problem. In particular, conformal mapping, finite differences, and panel methods are all means of producing accurate solutions in reasonable amounts of computational time. The individual merits and shortcomings of each are discussed below.

4.2.1 Conformal Mapping

The technique of conformal mapping[37] is probably the most efficient means of solving Laplace's equation. A conformal transformation is used to map the physical geometry into a simplified shape for which the solution of Laplace's equation is known. The solution to the physical problem is then found by applying the reverse transformation to the solution in the auxiliary plane. If the physical geometry is relatively simple, the transformation, and therefore the solution to Laplace's equation, can be determined analytically. For more complex geometries the transformation can not be determined analytically. In this case the conformal technique fails even if the transformation is determined numerically, since there is no direct way to determine the reverse transformation.

Tavella [13] used conformal mapping in his ejector model where the shroud was idealized as an infinitely thin flat plate. The geometry was then such that the classical Borda's mouthpiece solution [38] could be used. Tavella also was able to
obtain solutions for shrouds that could be described in terms of small perturbations to the flat plates.

For the purposes of this work it is necessary to consider a more general class of shroud shapes. Since the conformal mapping technique is not applicable to an arbitrary geometry, it can not be used as the solution procedure in the present work.

4.2.2 Finite Difference Calculations

Finite difference methods[39] can solve a general class of inviscid flow problems. As long as a computational grid can be generated, the finite difference procedure will work on practically any geometry. Aside from the ability to handle general geometries, the finite difference method is unattractive in that a computational grid must be generated and that the solution requires a time-consuming iterative process. These features make finite difference methods computationally expensive, and therefore less attractive than the third alternative, panel methods.

4.2.3 Panel Methods

Panel methods[40] compete directly with finite difference methods in their ability to treat complex geometries. They are computationally cheaper than finite difference methods, however, since they do not require a computational grid or an iterative solution. The solution procedure involves solving a linear system of algebraic equations in a direct mode.

Of these three solution procedures, the panel method is the one preferred for the ejector study, since it is the most efficient method for the degree of generality required. Other methods such as the vortex lattice [41, chap. 7] or vortex sheet[42, chapt. 5] would work equally as well, but offer no further advantage over the panel method. The panel method is chosen since its use is well documented in the literature.

4.3 Derivation of the Source-Panel Method

Panel methods belong to a general class of surface singularity methods in which a solid body is replaced by distributions of various forms of singular elementary solutions to Laplace's equation (i.e. sources, doublets, vorticies, etc.) In the sourcepanel method used here, the body surface is broken up into a number of small elements or "panels" over which sources are distributed. The source intensities are determined by enforcing boundary conditions at the center of each element. For solid surfaces, the boundary condition is that the sum of the velocities induced by all of the panels exactly cancel the component of the free stream normal to the surface element. For flow-through boundaries, the sum of all the induced velocities and the free stream are required to equal a specified normal velocity.

4.3.1 Green's Third Identity

The starting point in the derivation of the panel method is the two-dimensional version of Green's third identity[43, page 142]

$$
\begin{equation*}
\phi\left(x_{0}, y_{0}\right)=\frac{1}{2 \pi} \int_{C}\left[\frac{\partial \phi}{\partial n} \ln (r)-\phi \frac{\partial}{\partial n} \ln (r)\right] d s \tag{4.7}
\end{equation*}
$$

Green's identity relates the value of the potential at any fixed field point $\left(x_{0}, y_{0}\right)$ to an integral over the body contour. The distance from the fixed point $\left(x_{0}, y_{0}\right)$ to the point of integration on the body surface is r, while n is the local outward pointing normal. $\frac{1}{2 \pi} \ln (r)$ is the Green's function for a two-dimensional source. Its normal derivative, $\frac{1}{2 \pi} \frac{\partial}{\partial n} \ln (r)$ represents a two-dimensional doublet. The derivative of potential normal to the surface has the interpretation of the source strength, while the value of the potential on the surface is associated with the doublet strength. These strengths are usually denoted by $\sigma(s)$ and $\mu(s)$ respectively. With these conventions, Eq. (4.7) becomes

$$
\begin{equation*}
\phi\left(x_{0}, y_{0}\right)=\frac{1}{2 \pi} \int_{C}\left[\sigma(s) \ln (r)-\mu(s) \frac{\partial}{\partial n} \ln (r)\right] d s \tag{4.8}
\end{equation*}
$$

Solutions to the boundary integral problem are not unique. That is several different distributions of σ and μ can be found to satisfy the given boundary conditions. In
many cases a well conditioned problem can be formulated with the sources alone. The most notable of these is the flow over non-lifting aerodynamic bodies. It is easy to demonstrate that sources alone are also sufficient to produce aerodynamic forces, provided that the body is semi-infinite. In this work the ejector shroud is treated as a semi-infinite body and thus the solution can be obtained without the use of doublets.

In anticipation of discretizing the body surface into a collection of small elements, the boundary integral in Green's third identity is broken up into the sum of integrals taken over adjoining sections of the surface. Thus, using sources alone, Eq. (4.8) may be written equivalently as

$$
\begin{equation*}
\phi\left(x_{0}, y_{0}\right)=\sum_{j=1}^{N} \frac{1}{2 \pi} \int_{s_{j}-\Delta s_{j} / 2}^{s_{j}+\Delta s_{j} / 2} \sigma(s) \ln r\left(s ; x_{0}, y_{0}\right) d s \tag{4.9}
\end{equation*}
$$

or more compactly

$$
\begin{equation*}
\phi\left(x_{0}, y_{0}\right)=\sum_{j=1}^{N} \frac{1}{2 \pi} \int_{-\Delta s_{j} / 2}^{\Delta_{s} / 2} \sigma(\hat{s}) \ln r\left(\hat{s} ; x_{0}, y_{0}\right) d \hat{s} \tag{4.10}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{s}=s-s_{j} \tag{4.11}
\end{equation*}
$$

The derivation becomes simpler if each of the integrals contained in the above sum is transformed from its current curvilinear system to a local cartesian coordinate system placed tangent to the curve at $\hat{s}=0$ (see Figure 4.1). The origin of the $j^{\text {th }}$ local coordinate system lies at the point $\left(x_{c p_{j}}, y_{c p_{j}}\right)$ in the global system. The subscript $c p$ is used to denote control point since, later in the analysis, boundary conditions will be imposed at these points. The $j^{\text {th }}$ transformation has the form

$$
\begin{align*}
\xi_{j} & =\left(x-x_{c p_{j}}\right) \cos \alpha_{j}+\left(y-y_{c p_{j}}\right) \sin \alpha_{j} \tag{4.12}\\
\eta_{j} & =-\left(x-x_{c p_{j}}\right) \sin \alpha_{j}+\left(y-y_{c p_{j}}\right) \cos \alpha_{j}
\end{align*}
$$

When the above transformation is used, Eq. (4.10) becomes

$$
\begin{equation*}
\phi\left(x_{0}, y_{0}\right)=\sum_{j=1}^{N} \frac{1}{2 \pi} \int_{-\Delta \xi_{j} / 2}^{\Delta \xi_{j} / 2} \sigma(\xi) \ln r\left(\xi ; \xi_{j 0}, \eta_{j 0}\right) \frac{d \hat{s}}{d \xi} d \xi \tag{4.13}
\end{equation*}
$$

Figure 4.1: Higher order panel surface element
The distance from the transformed location of the fixed point $\left(\xi_{j 0}, \eta_{j 0}\right)$ to the integration point on the body surface, $\left(\xi, \eta_{b}(\xi)\right)$, is

$$
\begin{equation*}
r^{2}\left(\xi ; \xi_{j 0}, \eta_{j 0}\right)=\left(\xi_{j_{0}}-\xi\right)^{2}+\left[\eta_{j 0}-\eta_{b}(\xi)\right]^{2} \tag{4.14}
\end{equation*}
$$

The velocity components are found by differentiating Eq. (4.13) while making use of the chain rule and Eqs. (4.12) and (4.14) (the tildes are used to signify a velocity computed in the transformed coordinate system)

$$
\begin{align*}
& V_{x}\left(x_{0}, y_{0}\right)=\sum_{j=1}^{N}\left[\tilde{V}_{\xi_{j}}\left(\xi_{j_{0}}, \eta_{j_{0}}\right) \cos \alpha_{j}-\tilde{V}_{\eta_{j}}\left(\xi_{j_{0}}, \eta_{j_{0}}\right) \sin \alpha_{j}\right] \tag{4.15}\\
& V_{y}\left(x_{0}, y_{0}\right)=\sum_{j=1}^{N}\left[-\tilde{V}_{\xi_{j}}\left(\xi_{j_{0}}, \eta_{j 0}\right) \sin \alpha_{j}+\tilde{V}_{\eta_{j}}\left(\xi_{j_{0}}, \eta_{j_{0}}\right) \cos \alpha_{j}\right] \tag{4.16}
\end{align*}
$$

where

$$
\begin{align*}
\tilde{V}_{\xi_{j}}\left(\xi_{j_{0}}, \eta_{j_{0}}\right) & =\frac{1}{2 \pi} \int_{-\Delta \xi_{j} / 2}^{\Delta \xi_{j} / 2} \sigma(\xi) \frac{\xi_{j_{0}}-\xi}{r^{2}} \frac{d \hat{s}}{d \xi} d \xi \tag{4.17}\\
\tilde{V}_{\eta_{j}}\left(\xi_{j_{0}}, \eta_{j_{0}}\right) & =\frac{1}{2 \pi} \int_{-\Delta \xi_{j} / 2}^{\Delta \xi_{j} / 2} \sigma(\xi) \frac{\eta_{j_{0}}-\eta_{b}(\xi)}{r^{2}} \frac{d \hat{s}}{d \xi} d \xi \tag{4.18}
\end{align*}
$$

4.3.2 Taylor Series Expansion of the Source Intensity and Surface Shape

Up to this point no approximation has been introduced. If the distribution of source intensity $\sigma(\xi)$ and the body shape $\eta_{b}(\xi)$ are known, then the above relations can be used to find the exact result for velocity at any point in the field. This is not possible in general, however, because the source distribution is not known a priori. In the panel method, both the source strength and the surface shape are expanded Taylor series centered about the element origin. If the element length is small compared with the distance to the field point, higher order terms in the expansion are small and can be neglected.

4.3.3 Classical Panel Method

In the classical or "first order" panel method, only the leading terms in each of the expansions are retained. That is, the body shape is approximated by a collection of linear segments and the source strength is taken to be locally constant over each of the elements. Under this approximation, the surface description contains slope discontinuities, while the source distribution is discontinuous in strength. The discontinuity in source strength that occurs at the panel junctions has a repercussion in the solution in that the velocity becomes infinite at these points. The velocity remains well behaved at the panel center, however, and the method can be used to produce accurate results provided that the surface velocity calculations are restricted to the panel center.

An additional problem associated with the discontinuous source strength is that the body "leaks" mass at the panel junctions. Due to to a fortuitous symmetric cancellation of errors, the leaks do not pose a serious difficulty when external flows are computed.[40]. However, the situation is reversed when computing internal flows since error reinforcement spoils the solution[44]. If the classical panel method is applied to a duct flow problem, mass will not be conserved within the duct. In addition, the velocity field becomes singular near bends in the channel wall or at the duct end. Attempts to remedy this problem by decreasing the panel size are not
met with success since the first order approximation converges slowly to the exact solution. A prohibitively large number of panels would be needed to accurately describe an internal flow with the classical panel method.

4.3.4 Higher Order Panel Method

The best way to avoid the leakage problem in internal flows is to retain more terms in the expansions for the source distribution and surface shape. In the higher order method described by Hess[45], the body is described by quadratic surface elements. The singularity intensity is also allowed to vary quadratically. This formulation makes both the surface shape and source distribution continuous through the first derivative. The leakage problem is eliminated and the approximate solution converges to the exact one with the third power of the ratio of the panel length to the distance to the field point. The formulation of Hess is adopted here and the derivation which follows is similar to the less detailed account given in the original paper[45].

The derivation is started by introducing higher order approximations to the source distribution and the body surface shape. To second order, these quantities may be approximated as

$$
\begin{align*}
\sigma(\xi)=\sigma_{j} & +\dot{\sigma}_{j} \xi+\frac{1}{2} \ddot{\sigma}_{j} \xi^{2}+O\left(\xi^{3}\right) \tag{4.19}\\
\eta_{b}(\xi) & =\frac{1}{2} \frac{\partial^{2} \eta}{\partial \xi^{2}} \xi^{2}+O\left(\xi^{3}\right) \tag{4.20}\\
& =\frac{1}{2} \kappa_{j} \xi^{2}+O\left(\xi^{3}\right)
\end{align*}
$$

where κ_{j} is the local surface curvature. Note that, because the origin of the local coordinate system is tangent to the body curve, the first two terms of the Taylor series for the surface shape are zero. The arc length along the surface is found from

$$
\begin{equation*}
\hat{s}=\int_{0}^{\xi} \sqrt{1+\left(\frac{d \eta_{b}}{d \xi}\right)^{2}} d \xi \tag{4.21}
\end{equation*}
$$

Eq. (4.20) is substituted above, and the resulting integral expanded for small ξ to give

$$
\begin{equation*}
\hat{s}=\xi+\frac{1}{6} \kappa_{j}^{2} \xi^{3}+O\left(\xi^{4}\right) \tag{4.22}
\end{equation*}
$$

The jacobian for the change of variables between \hat{s} and ξ is

$$
\begin{equation*}
\frac{d \hat{s}}{d \xi}=1+\frac{1}{2} \kappa_{j}^{2} \xi^{2}+O\left(\xi^{3}\right) \tag{4.23}
\end{equation*}
$$

Using Eqs. (4.14), (4.19), (4.20), and (4.23), the integrands of the expressions for the velocity components (Eqs. (4.17) and (4.18)) can be expressed as functions of ξ and then expanded for small ξ. The resulting integrals give the velocity components as a power series in $\Delta \xi$. This series will not converge, however, if the velocity is computed at a point closer than $\Delta \xi / 2$ from the panel center. This problem is relieved by using an alternate expansion of the integrands in which terms that correspond to a constant source strength over a flat panel are retained as functions of ξ, and all other terms expanded for small ξ. The resulting integrals involve the same terms that are found in a classical panel method, plus terms proportional to powers of $\Delta \xi$ that represent the contributions from the higher order effects of surface and singularity shape. This formulation not only makes the series convergent, but at the same time, assures that the integrals reduce to the results for a classical panel method as the surface element becomes vanishingly small.

The modified expansion is implemented by first writing Eq. (4.14) in the following equivalent form

$$
\begin{align*}
r^{2} & =\left[\left(\xi_{j_{0}}-\xi\right)^{2}+\eta_{j_{0}}^{2}\right]-2 \eta_{j_{0}} \eta_{b}(\xi)+\eta_{j_{0}}^{2} \tag{4.24}\\
& =r_{f}^{2}-2 \eta_{j_{0}} \eta_{b}(\xi)+\eta_{j_{0}}^{2}
\end{align*}
$$

The quantity r_{f} represents the distance from the field point to a point on a "flat" element sitting on the ξ axis (see Figure 4.1). Equation (4.20) is now used to write the above expression as

$$
\begin{equation*}
r^{2}=r_{f}^{2}\left[1-\kappa\left(\frac{\eta_{j 0} \xi}{r_{f}^{2}}\right) \xi+\frac{1}{4} \eta_{j_{0}} \kappa^{2}\left(\frac{\eta_{j 0} \xi}{r_{f}^{2}}\right) \xi^{3}\right] \tag{4.25}
\end{equation*}
$$

Note that when r_{f} is small, $r_{f}, \eta_{j_{0}}$, and ξ are all of the same order of magnitude. Thus the grouping $\eta_{j o} \xi / r_{f}^{2}$ remains of order unity as r_{f} drops below $\Delta \xi / 2$. The series for the induced velocities will converge if the quantity r_{f} is retained as a function of ξ in the integration, and only the latter terms of Eq. (4.25) expanded.

In particular

$$
\begin{equation*}
\frac{1}{r^{2}}=\frac{1}{r_{f}^{2}}\left[1+\kappa\left(\frac{\eta_{j o} \xi}{r_{f}^{2}}\right) \xi+O\left(\xi^{3}\right)\right] \tag{4.26}
\end{equation*}
$$

The above expression as well as Eqs. (4.20), (4.23), and (4.19) are substituted into the integrals of Eqs. (4.17), and (4.18). The resulting expressions are expanded in powers of ξ, and terms through order ξ^{2} retained to give the velocity components induced by the $j^{\text {th }}$ panel

$$
\begin{align*}
\tilde{V}_{\xi_{j}}\left(\xi_{j_{0}}, \eta_{j_{0}}\right)= & \frac{1}{2 \pi} \int_{-\Delta \xi_{j} / 2}^{\Delta \xi_{j} / 2} \frac{\left(\xi_{j_{0}}-\xi\right)}{r_{f}^{2}}\left\{\sigma_{j}+\left[\kappa_{j}\left(\frac{\eta_{j_{0}} \xi}{r_{f}^{2}}\right) \sigma_{j}+\dot{\sigma}_{j}\right]\right. \\
& \left.\frac{1}{2}\left(\kappa_{j}^{2} \sigma_{j}+\ddot{\sigma}_{j}\right) \xi^{2}+O\left(\xi^{3}\right)\right\} d \xi \tag{4.27}\\
\tilde{V}_{\eta_{j}}\left(\xi_{j 0}, \eta_{j 0}\right)= & \frac{1}{2 \pi} \int_{-\Delta \xi_{j} / 2}^{\Delta \xi_{j} / 2} \frac{\eta_{j_{0}}}{r_{f}^{2}}\left\{\sigma_{j}+\left[\kappa_{j}\left(\frac{\eta_{j_{0}} \xi}{r_{f}^{2}}+\frac{1}{2} \frac{\xi}{\eta_{j 0}}\right) \sigma_{j}+\dot{\sigma}_{j}\right] \xi+\right. \\
& \left.\frac{1}{2}\left(\kappa_{j}^{2} \sigma_{j}+\ddot{\sigma}_{j}\right) \xi^{2}+O\left(\xi^{3}\right)\right\} d \xi \tag{4.28}
\end{align*}
$$

When the above integrals are evaluated, the results may be written in vector form as

$$
\begin{equation*}
\overrightarrow{\tilde{V}}_{j}\left(\xi_{j_{0}}, \eta_{j_{0}}\right)=\overrightarrow{\tilde{A}}_{j}^{(0)} \sigma_{j}+\left[\overrightarrow{\tilde{A}}_{j}^{(c)} \kappa_{j} \sigma_{j}+\overrightarrow{\tilde{A}}_{j}^{(1)} \dot{\sigma}_{j}\right] \Delta \xi_{j}+\overrightarrow{\tilde{A}}_{j}^{(2)}\left[\kappa_{j}^{2} \sigma_{j}+\ddot{\sigma}_{j}\right] \Delta \xi_{j}^{2} \tag{4.29}
\end{equation*}
$$

Here $\overrightarrow{\tilde{A}}^{(0)}$ represents the disturbance due to constant source strength distributed over a flat surface element. This is the only term which is resolved in a classical panel method. The next higher order term is composed of two parts, one that accounts for the surface curvature and another that accounts for the slope of the source intensity. The last term above involves still higher order effects of surface and singularity distribution curvature. The individual terms in Eq. (4.29) are written out in full below. With the definitions

$$
\begin{align*}
& r_{1}^{2}=\left(\xi_{0}+\Delta \xi / 2\right)^{2}+\eta_{0}^{2} \tag{4.30}\\
& r_{2}^{2}=\left(\xi_{0}-\Delta \xi / 2\right)^{2}+\eta_{0}^{2}
\end{align*}
$$

the individual terms in Eq. (4.29) are

$$
\begin{align*}
\tilde{A}_{\xi}^{(0)} & =\frac{1}{4 \pi} \ln \frac{r_{1}^{2}}{r_{2}^{2}} \\
\tilde{A}_{\eta}^{(0)} & =\frac{1}{2 \pi}\left[\tan ^{-1}\left(\frac{\xi_{0}+\Delta \xi / 2}{\eta_{0}}\right)-\tan ^{-1}\left(\frac{\xi_{0}-\Delta \xi / 2}{\eta_{0}}\right)\right] \\
\tilde{A}_{\xi}^{(1)} & =\frac{1}{\Delta \xi}\left[\eta_{0} \tilde{A}_{\eta}^{(0)}+\xi_{0} \tilde{A}_{\xi}^{(0)}-2 \Delta \xi\right] \\
\tilde{A}_{\eta}^{(1)} & =\frac{1}{\Delta \xi}\left[\xi_{0} \tilde{A}_{\eta}^{(0)}-\eta_{0} \tilde{A}_{\xi}^{(0)}\right] \\
\tilde{A}_{\xi}^{(c)} & =\frac{1}{\Delta \xi}\left[-\xi_{0} \tilde{A}_{\eta}^{(0)}+\eta_{0} v_{\xi}^{(0)}+\frac{1}{2} \frac{\xi_{0} \eta_{0} \Delta \xi^{3}}{r_{1}^{2} r_{2}^{2}}\right] \tag{4.31}\\
\tilde{A}_{\eta}^{(c)} & =\frac{1}{\Delta \xi}\left[\eta_{0} \tilde{A}_{\eta}^{(0)}+\xi_{0} \tilde{A}_{\xi}^{(0)}-\Delta \xi\left(1+\frac{\left(\xi_{0}^{2}+\eta_{0}^{2}\right)^{2}-\left(\xi^{2}-\eta_{0}^{2}\right)(\Delta \xi / 2)^{2}}{r_{1}^{2} r_{2}^{2}}\right)\right] \\
\tilde{A}_{\xi}^{(2)} & =\frac{1}{\Delta \xi^{2}}\left[\xi_{0} \eta_{0} \tilde{A}_{\eta}^{(0)}+\frac{1}{2}\left(\xi_{0}^{2}-\eta_{0}^{2}\right) \tilde{A}_{\xi}^{(0)}-\xi_{0} \Delta \xi\right] \\
\tilde{A}_{\eta}^{(2)} & =\frac{1}{\Delta \xi^{2}}\left[\frac{1}{2}\left(\xi_{0}^{2}-\eta_{0}^{2}\right) \tilde{A}_{\eta}^{(0)}-\eta_{0} \xi_{0} \tilde{A}_{\xi}^{(0)}+\eta_{0} \Delta \xi\right]
\end{align*}
$$

These formulas give the velocity induced by the $j^{\text {th }}$ panel in terms of its local coordinate system. It is more useful to have the velocity in terms of the global coordinate system. Using Eqs. (4.15) and (4.16), it is possible to write each of the above terms in the following general form

$$
\begin{align*}
A_{x_{j}} & =\tilde{A}_{\xi_{j}} \cos \alpha_{j}-\tilde{A}_{\eta_{j}} \sin \alpha_{j} \tag{4.32}\\
A_{y_{j}} & =\tilde{A}_{\xi_{j}} \sin \alpha_{j}+\tilde{A}_{\eta_{j}} \cos \alpha_{j}
\end{align*}
$$

The derivatives of the source distribution still remain to be determined. This is done by using second order accurate finite differences as follows

$$
\begin{align*}
\dot{\sigma}_{j} & =D_{j} \sigma_{j-1}+E_{j} \sigma_{j}+F_{j} \sigma_{j+1} \tag{4.33}\\
\ddot{\sigma}_{j} & =G_{j} \sigma_{j-1}+H_{j} \sigma_{j}+I_{j} \sigma_{j+1}
\end{align*}
$$

where

$$
\begin{align*}
D_{j} & =-\frac{b}{a(a+b)} \\
E_{j} & =\frac{b-a}{a b} \\
F_{j} & =\frac{a}{b(a+b)} \tag{4.34}\\
G_{j} & =\frac{2}{a(a+b)} \\
H_{j} & =-\frac{2}{a b} \\
I_{j} & =\frac{2}{b(a+b)}
\end{align*}
$$

and where

$$
\begin{align*}
a & =\frac{1}{2}\left(\Delta \xi_{j-1}+\Delta \xi_{j}\right) \\
b & =\frac{1}{2}\left(\Delta \xi_{j}+\Delta \xi_{j+1}\right) \tag{4.35}
\end{align*}
$$

4.3.5 Boundary Conditions

In order to satisfy the boundary conditions, it is necessary to determine the net influence of all panels acting at the control point of the $i^{\text {th }}$ panel. This is done by systematically finding the influence of the $j^{\text {th }}$ panel at the fixed control point i, and then summing the results over all j. When considering the $j^{\text {th }}$ panel, the point $\left(\xi_{j 0}, \eta_{j 0}\right)$ in Eq. (4.29) is made to correspond to the $i^{\text {th }}$ panel control point. Next Eq. (4.32) is used to transform the influence of the $j^{\text {th }}$ panel into the global coordinate system. Equation (4.33) is then used to replace the derivatives of the source distribution in terms of the values at the panel center as well at the two adjacent panel centers. Finally the results are summed to give

$$
\begin{align*}
\vec{V}_{i}= & \sum_{j=1}^{N}\left\{\vec{A}_{i j}^{(0)} \sigma_{j}+\left[\vec{A}_{i j}^{(c)} \kappa_{j} \sigma_{j}+\vec{A}_{i j}^{(1)}\left(D_{j} \sigma_{j-1}+E_{j} \sigma_{j}+F_{j} \sigma_{j+1}\right)\right] \Delta \xi_{j}+\right. \\
& \left.\vec{A}_{i j}^{(2)}\left[\kappa_{j}^{2} \sigma_{j}+\left(G_{j} \sigma_{j-1}+H_{j} \sigma_{j}+I_{j} \sigma_{j+1}\right)\right] \Delta \xi_{j}^{2}\right\} \tag{4.36}
\end{align*}
$$

The above sum may be written equivalently as

$$
\begin{equation*}
\vec{V}_{i}=\sum_{j=1}^{N} \vec{B}_{i j} \sigma_{j} \tag{4.37}
\end{equation*}
$$

where

$$
\begin{align*}
\vec{B}_{i j}= & \vec{A}_{i j}^{(0)}+\vec{A}_{i j}^{(1)} E_{j} \Delta \xi_{j}+\vec{A}_{i j}^{(c)} \kappa_{j} \Delta \xi_{j}+\vec{A}_{i j}^{(2)}\left(H_{j}+\kappa_{j}^{2}\right) \Delta \xi_{j}^{2}+ \\
& \vec{A}_{i j-1}^{(1)} F_{j-1} \Delta \xi_{j-1}+\vec{A}_{i j-1}^{(2)} I_{j-1} \Delta \xi_{j}^{2}+ \\
& \vec{A}_{i j+1}^{(1)} D_{j+1} \Delta \xi_{j+1}+\vec{A}_{i j+1}^{(2)} G_{j+1} \Delta \xi_{j}^{2} \tag{4.38}
\end{align*}
$$

The quantity $\vec{B}_{i j}$ is interpreted as the influence of the $j^{\text {th }}$ panel at the $i^{\text {th }}$ control point. A linear system of algebraic equations for the source strengths is formed by imposing one boundary condition per panel. The boundary condition is that the velocity normal to the panel have a specified value, that is

$$
\begin{equation*}
\left(\vec{V}_{i}+\overrightarrow{V_{\infty}}\right) \cdot \vec{n}_{i}=V_{n_{i}} \tag{4.39}
\end{equation*}
$$

where \vec{n} is the outward pointing normal defined as

$$
\begin{equation*}
\vec{n}_{i}=-\sin \alpha_{i} \hat{x}+\cos \alpha_{i} \hat{y} \tag{4.40}
\end{equation*}
$$

For solid surfaces, V_{n} is zero. Non-zero values of V_{n} correspond to flow-through boundaries or porous surfaces. When each of the boundary conditions are enforced, the following linear system arises

$$
\begin{equation*}
\sum_{j=1}^{N}\left(-\sin \alpha_{i} B_{x_{i} j}+\cos \alpha_{i} B_{y_{i}}\right) \sigma_{j}=V_{x_{\infty}} \sin \alpha_{i}-V_{y_{\infty}} \cos \alpha_{i}+V_{n_{i}} \tag{4.41}
\end{equation*}
$$

The solution of this matrix equation yields the source strength values σ_{j} and the velocity at each of the control points can be found through the use of Eq. (4.37). Velocities at any other arbitrary point in the field may be calculated by following the procedure used to generate Eq. (4.36), where the $i^{\text {th }}$ control point is replaced by the field point.

4.3.6 Surface Curvature Calculation

One remaining detail of the higher-order panel method is a procedure for calculating the surface curvature. If the body surface is described by an analytic function, the curvature is known everywhere, and the procedure is straightforward. In most instances, however, the geometry is not described by an analytic expression, but rather by $N+1$ discrete points on the body surface. In this case, the curvature must be computed by a suitable approximate means. A good way to do this is to use a pair of parametric spline fits ${ }^{1}$ where x_{b} and y_{b} are treated as functions of the approximate arc length found by summing the linear distance between points. Let ζ be the approximate arc length, then the spline fits give

$$
\begin{align*}
x_{b} & =x_{b}(\zeta) \tag{4.42}\\
y_{b} & =y_{b}(\zeta)
\end{align*}
$$

[^0]Let $\dot{x_{b}}$ and $\dot{y_{b}}$ denote derivatives with respect to ζ. Then the curvature for the $j^{\text {th }}$ panel is computed from [46, page 464]

$$
\begin{equation*}
\kappa_{j}=\left.\frac{\dot{x_{b}} \ddot{y}_{b}-\dot{y_{b}} \ddot{x}_{b}}{\left(\dot{x}_{b}{ }^{2}+\dot{y}_{b}\right)^{3 / 2}}\right|_{\zeta=j+1 / 2} \tag{4.43}
\end{equation*}
$$

4.4 Inviscid Solution for the Single-Jet Ejector

The panel method requires that the surface of the ejector be broken up into a collection of small surface elements. Since the configurations treated here are symmetric, it is sufficient to consider only the upper half plane. Figure 4.2 shows how the upper half plane of the single-jet ejector is modeled with the panel method. The dividing streamline that approaches the ejector along the plane of symmetry is treated as a solid boundary. The following sloped linear segment represents the boundary between the viscous jet flow and inviscid secondary flow. The angle between this segment and the jet axis is taken to be 12^{0} in accord with observations for the spreading rate of free jets. The position of the panels that cover the jet boundary remain fixed during the calculation. If the jet spreads less than the assumed 12^{0}, some of the inviscid flow will be contained within the viscous region. This does not present a problem, however, since the viscous formulation is also able to handle the inviscid portion of the flow, provided that it is uniform. Suction boundary conditions are applied to the panels that cover the jet to simulate entrainment of the secondary flow. The magnitude of the suction applied at the jet boundary panels is determined in the solution process. The half-circle at the upper end of the jet boundary serves as a control station where a uniform flow boundary condition is applied. The need for the control station arises from the fact that panel methods become inaccurate inside the sharp concave corner that would otherwise exist where the jet intersects the ejector channel walls. The uniform flow boundary condition is justifiable since experiments have shown [47] that the secondary flow well within the channel becomes nearly uniform.

The ejector shroud is modeled as an impermeable surface. The wake formed behind the ejector is treated as a continuation of the same streamline that defines the shroud. Under this assumption the mixing taking place in the wake is neglected.

Figure 4.2: Panel geometry for the single-jet ejector

This is justifiable since computations have shown that the details of the wake have little effect on the performance of the ejector.

4.5 Inviscid Solution for the Dual-Jet Ejector

The panel geometry used for the dual-jet ejector model is quite similar to that used in the single-jet model. The actual distribution of panels is shown in Figure 4.3. As in the single-jet case, the presence of symmetry allows the solution to be restricted to the upper half plane. Unlike the single-jet ejector case, the upper half plane for the dual-jet ejector contains one whole jet. The entrainment that occurs on both the upper and lower side of the jet is accounted for by applying suction to the panels that cover both sides of the jet. To account for asymmetries in the secondary flow with respect to the jet centerline, The distribution of entrainment on either side of the jet is not required to be the same. The distribution of entrainment velocities for both sides of the jet are again determined in the solution process.

Owing to a non-uniform pressure profile in the secondary flow near the ejector inlet, the jet is acted upon by a transverse pressure difference. The jet responds to the pressure difference by curving its trajectory in such a way that the centrifugal force acting on the fluid particles is balanced by the force created by the pressure difference. The inviscid solution accounts for this by placing jet boundary panels on curved surfaces that reflect the curvature of the jet centerline. The shape of the curved jet trajectory is not known a priori, but rather must be determined along with the rest of the solution. For this reason, the panels that cover the jet boundary in the dual-jet case must be free to move as the solution progresses. After each iteration, the locations of the jet boundary panels are adjusted to conform with the latest computation of the jet trajectory.

Figure 4.3: Panel geometry for the dual-jet ejector

Chapter 5

Viscous Solution

5.1 Equations of Motion

Turbulent jets are similar to boundary layers in that their transverse extent is small when compared with their streamwise length. The fluid shear is contained within a thin layer near the jet axis, and thus the streamwise gradients are small when compared with the transverse gradients. Under these conditions, the boundary layer assumptions are met and it is permissible to neglect the streamwise diffusion term in the Navier-Stokes equations. In addition, turbulent jets have the special characteristic that they develop in the absence of solid surfaces, where molecular viscosity is an important factor. Turbulent transport dominates molecular transport everywhere in the jet flow field, and it is therefore possible to entirely neglect the effects of viscosity [48, page 53].

The equations that govern the jet flow are the turbulent boundary layer equations in which the molecular viscosity has been neglected.

$$
\begin{gather*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \tag{5.1}\\
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+\frac{1}{\rho} \frac{\partial p}{\partial x}=\frac{1}{\rho} \frac{\partial \tau}{\partial y} \tag{5.2}
\end{gather*}
$$

The transverse momentum equation is retained in the following approximate form [49] that relates the lateral pressure gradient to the centrifugal force associated with

41 INTENTIONALLY BLANK
curved particle trajectories

$$
\begin{equation*}
\frac{\partial p}{\partial y}=\frac{\rho u^{2}}{R} \tag{5.3}
\end{equation*}
$$

The flow is assumed to be incompressible, and thus the equation of state is simply

$$
\begin{equation*}
\rho=\text { const } \tag{5.4}
\end{equation*}
$$

Finally, the turbulent shear stress is related to the mean velocity gradients via the Boussinesq approximation

$$
\begin{equation*}
\frac{1}{\rho} \tau=\nu_{t} \frac{\partial u}{\partial y} \tag{5.5}
\end{equation*}
$$

Here ν_{t} is the "eddy viscosity coefficient" which is determined from a simple algebraic stress model.

5.2 Solution Alternatives

The boundary layer equations are classified mathematically as being parabolic. Parabolic equations are relatively simple to solve since the properties at any given station are only affected by the upstream flow history. This one-sidedness allows approximate solution methods to be formulated in terms of simple marching schemes that integrate the equations in a single streamwise pass. The merits of a few suitable approximate schemes, as well an exact solution alternative are considered below.

5.2.1 Similarity Solutions

In a few special cases, the boundary conditions are such that the boundary layer equations yield exact solutions. These solutions are all of the similarity type, in which the absence of a natural length scale dictates that the solution must depend on the ratio y / x. This regrouping of variables reduces the dimension of the problem by one, and the boundary layer equations reduce to an integrable ordinary differential equation.

The turbulent free jet is one such special case. A similarity solution to the free turbulent free jet was first found by Tollmien[50] in 1926. Tollmien, who used Prandtl's mixing length formula, arrived at the solution in terms of a modified
stream function that had to be found numerically. Later Gortler[51] used an eddy viscosity model to arrive at a purely analytical result in which the solution is written in terms of hyperbolic functions. These solutions are extremely valuable since they give the velocity everywhere in the field in terms of a single known function.

While similarity solutions exist for the free jet, they do not, in general, exist for confined jets. The separation between the channel walls, the external flow velocity, and the pressure gradient all introduce length scales that spoil similarity. Newmann[52] performed a detailed study of the conditions under which self-similar solutions exist for jets subjected to a streamwise pressure gradient. He found that similarity is only possible under the following restrictive conditions on the external flow

$$
\begin{equation*}
\frac{u_{0}}{u_{1}}=\mathrm{const} \tag{5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\dot{u}_{0} b}{u_{0}}=\text { const } \tag{5.7}
\end{equation*}
$$

where u_{0} is the external velocity, u_{1} the jet excess velocity ($u_{\max }-u_{0}$), and b the excess velocity half-width. These are strong conditions which are not expected to be satisfied in ejector flows.

While similarity solutions do not in general exist for ejector flows, some previous investigators $[9,53,54]$ have nonetheless incorporated the self-similar solution to a free jet in their analysis. In these works, it was assumed that the free jet solution would provide a reasonable estimate of the mixing process within the ejector. Experiments[47] do not support this assumption, however, and in fact show a significant departure from self-similarity with downstream distance. The use of free jet solutions may be acceptable in low accuracy solutions of relatively short ejectors, but should be ruled out in work aimed at a better understanding of the ejector mixing process.

5.2.2 Finite Difference Methods

A more general method of solving the confined jet problem is through a finite difference calculation of the boundary layer equations. Unlike the elliptic equations
encountered in the inviscid flow, the boundary layer equations may be solved under a finite difference scheme that does not involve iteration[55, chapt. 7] and [56]. A grid must still be generated, but the solution is obtained in a straightforward marching process, in which a tri-diagonal system of equations is inverted at each streamwise location. Finite difference procedures for solving the viscous flow within the ejector have been used in the past by several investigators [$11,57,58$].

Although the finite difference approach is relatively efficient, it still is not fast enough for the purposes of this work. Fortunately, an alternative method, superior in efficiency, exists for solving confined jet flows. This is the "momentum integral method" or more simply "integral method".

5.2.3 Integral Methods

An integral method is a form of approximation that does not attempt to satisfy the boundary layer equations at every point, but rather only satisfies the equations on an average sense over the thickness of the shear layer. This is accomplished by first integrating the boundary layer equations across the layer, and then finding an approximate solution to the resulting integro-differential equation. This approximate solution is found by assuming that the velocity profile has the same shape at each streamwise location, and that it is only the relative scaling of the profile which changes as the flow evolves. This idea allows the velocity profile to be expanded in terms of assumed shape functions of y, but undetermined scale functions of x. When the approximate expression is substituted into the integral form of the momentum equation, the integral in y can be performed analytically. What remains is a coupled set of ordinary differential equations for the scale functions of x. Only a trivial amount of computing effort is needed to march the solution of this set equations in the streamwise direction.

The integral method was first applied to boundary layer flows by von Karman [59] and later refined by Pohlhausen[60]. In these original works the velocity profile was expanded in a fourth order polynomial of $y / \delta(x)$, where $\delta(x)$ is the boundary layer thickness. The problem was thus reduced to solving a single ordinary differential equation for the scale function $\delta(x)$. This solution procedure is extremely
efficient and surprisingly accurate; the Karman-Pohlhausen solution predicts the skin friction to within 3.5% of the exact solution for a flat plate boundary layer.

Integral methods have also been successfully applied to confined jet flows. Curtet[61] developed an integral method for confined jets which was valid over the region where a definable inviscid flow co-exists with the jet in the channel. Hill[62] extended this analysis to the region where the flow within the channel is fully turbulent. Bevilaqua [9] and Tavella[12] have refined the method still further, and have applied it to ejector flows. Tavella compared his results with experiments and found a good agreement for the velocity profile and pressure evolution. Tavella's solution proved not only to be accurate, but extremely efficient as well. The four differential equations in his model could be marched through the ejector in a fraction of a second on an IBM 30-81 processor. In light of the previously demonstrated accuracy and economy of the integral method, it is adopted here as the preferred solution procedure for the viscous region.

The velocity profiles which are used in this work involve several scale functions of x. In this case, the integrated momentum equation itself does not provide enough information to determine one differential equation for each of the scale functions. The system is closed by using the method of weighted residuals to generate additional differential equations for the scale functions.

5.3 The Method of Weighted Residuals

The method of weighted residuals is a particular solution procedure for the integral method that allows an arbitrary number of independent differential equations for the scale functions to be generated from the momentum equation. A special application of the method is developed to produce a square system of equations for the scale functions by simultaneously enforcing an exact global conservation of mass and momentum, while enforcing an approximate global conservation of energy. This formulation leads to a condition that requires the residual error, created when the approximate velocity and pressure profiles are substituted into the momentum equation, be minimized. Minimization is achieved by demanding that the error be
orthogonal to an independent set of weighting functions.
The derivation of the method is straightforward. The first step is to integrate the continuity equation Eq. (5.1) with respect to y to give v as a function of u

$$
\begin{equation*}
v=-\int_{y_{1}}^{y} \frac{\partial u}{\partial x} d y \tag{5.8}
\end{equation*}
$$

The lower limit in the integration is jet centerline, y_{1}, where the v component of velocity vanishes by symmetry. Next let Γ be the operation on u and p that represents the streamwise momentum equation. Then Eqs. (5.2), (5.5), and (5.8) may be combined to give

$$
\begin{equation*}
\Gamma\{u, p\}=u \frac{\partial u}{\partial x}-\left[\int_{y_{1}}^{y} \frac{\partial u}{\partial x} d y\right] \frac{\partial u}{\partial y}+\frac{1}{\rho} \frac{\partial p}{\partial x}-\nu_{t} \frac{\partial^{2} u}{\partial y^{2}}=0 \tag{5.9}
\end{equation*}
$$

Approximate solutions for the velocity and pressure profile are now introduced. The assumed profiles depend explicitly on y through the known shape functions, and implicitly on x through the unknown scale functions. Let the scale functions be denoted by the sequence $c_{j}(x)$, then the approximate solution forms (denoted by hats) may be written symbolically as

$$
\begin{align*}
u(x, y) & \simeq \hat{u}\left(c_{j}(x), y\right) & & j=1,2, \ldots, N-1 \tag{5.10}\\
p(x, y) & \simeq \hat{p}\left(c_{j}(x), y\right) & & j=1,2, \ldots, N \tag{5.11}\\
& =c_{N}(x)+\tilde{p}\left(c_{j}(x), y\right) & & j=1,2,3, \ldots N-1
\end{align*}
$$

Note that the pressure has been split in two parts; one a function of x alone, and the other a function of both x and y. The elliptic effects associated with the pressure field are captured by taking \tilde{p} to be the solution of the approximate transverse momentum equation (Eq. (5.3)). The function \tilde{p} is an order of magnitude lower than c_{N}, and therefore is a higher order term in the streamwise momentum equation. In the usual procedure for the partially parabolized Navier-Stokes equations[55], \tilde{p} is neglected in the streamwise momentum equation and retained only in the transverse momentum equation. In this work \tilde{p} could also justifiably be neglected in the streamwise momentum equation. This is not done, however, since if \tilde{p} were neglected, Bernoulli's equation for the inviscid flow would not be exactly recovered at far distances from the jet centerline.

In order to obtain a set of equations to determine the unknown scale functions, the momentum equation is transformed from a statement of local flux balances to one of global flux balance by integrating it across the layer. If the viscous region extends from $y=0$ to $y=H$, the equation for the global conservation of momentum applied to the approximate profiles \hat{u} and \hat{p} provides the following governing equation for these quantities

$$
\begin{equation*}
\int_{0}^{H} \Gamma(\hat{u}, \hat{p}) d y=0 \tag{5.12}
\end{equation*}
$$

Use of the above averaged form of the momentum equation to specify the approximate profile leads to weaker solutions than those for the original differential form of the momentum equation. Although exact solutions to the above integral equation can easily be found, they will not satisfy the differential form of the momentum equation at each point. The weighted residual method provides a means of minimizing the error, however, and the weak solutions may used as a good approximation. In fact, when a properly implemented weighted residual method is used, the approximate solution will rapidly converge to the exact solution as the assumed profiles become increasingly flexible.

When the integral formulation is used, a subtle point arises in connection with the global conservation of mechanical energy. The equation that governs the flux of mechanical energy in incompressible boundary layer type flow is formed by taking the product of the streamwise velocity and the streamwise momentum equation. In differential form, the momentum and mechanical energy equations are redundant, since one is just a scalar multiple of the other. If the flux of momentum is in balance at each point, then the flux of mechanical energy is also in balance at each point. In the momentum integral formulation, redundancy between the momentum and energy equations does not exist, since the momentum flux is not required to balance at each point. The momentum flux is of course required to balance on the average, but this is not a sufficient condition to insure an average balance of energy flux. In essence, a global conservation of momentum does not imply a global conservation of mechanical energy. An independent equation must be used to enforce an overall balance of mechanical energy.

The equation needed to insure a global balance of mechanical energy is the energy integral equation. In analogy to the momentum integral equation, it is created by integrating the differential form of the energy equation. It has the form

$$
\begin{equation*}
\int_{0}^{H} \hat{u} \Gamma(\hat{u}, \hat{p})=0 \tag{5.13}
\end{equation*}
$$

If the velocity and pressure profiles can be specified by two unknown scale functions, then the momentum integral and energy integral equations are sufficient to solve the problem. It should be remarked that other possibilities exist for closing a two-equation system. The momentum integral equation along with a "moment of momentum" equation have been used by previous investigators[12,61]. While this alternate formulation leads to a solution, it should be criticized in that no attempt is made to conserve energy. When a choice exists, the energy integral equation should be preferred over other possible equations that lack physical meaning.

In situations where more than two scale functions must be determined, the momentum integral and energy integral do not provide enough information to close the system. This presents an apparent dilemma, since all three invariants of the flow (mass, momentum, and energy) have already been specified. No further equations which impose physical constraints on the system may be formulated. There is danger in imposing some non-physical condition, since this may overdetermine the system. A way out of this difficulty is to restate the energy equation in an approximate form. This operation then leads to additional conditions that require the error made in the approximation be minimized.

The approximate energy integral equation is derived as follows. Suppose that the function \hat{u} can be decomposed in terms of a suitable set of basis functions. Then it is permissible to write

$$
\begin{equation*}
\hat{u}=\sum_{i=1}^{\infty} a_{i}(x) w_{i}(y) \tag{5.14}
\end{equation*}
$$

As an approximation, assume that the \hat{u} which multiplies Γ in the energy integral equation can be represented by a finite number of terms in this series. The \hat{u} that appears in the operator Γ itself is not expanded, but is left intact. In this case the
energy integral equation (Eq. (5.13)) is approximated by

$$
\begin{equation*}
\sum_{i=1}^{N} a_{i}(x) \int_{0}^{H} w_{i}(y) \Gamma(\hat{u}, \hat{p}) d y=0 \tag{5.15}
\end{equation*}
$$

The sum is made to vanish by imposing the strong condition that each of its components vanish independently. This requirement yields the following sequence of equations

$$
\begin{equation*}
\int_{0}^{H} w_{i}(y) \Gamma(\hat{u}, \hat{p}) d y=0 \quad i=1,2, \ldots, N \tag{5.16}
\end{equation*}
$$

Note the similarity between this equation and the momentum integral equation (Eq. (5.12)). The two are not independent, since the function 1 that weights Γ in the momentum integral equation is either contained directly in the basis w_{i}, or can be generated as a linear combination of these. If the basis functions are chosen so that $w_{1}=1$, then the momentum integral equation is actually the first term approximation to the energy integral equation ${ }^{1}$. In this case Eq. (5.16) alone is sufficient to insure a global conservation of momentum and an approximate global conservation of mechanical energy. In this work the basis functions are always chosen so that this condition is satisfied.

At this point it is worthwhile to reinterpret Eq. (5.16) as a statement of the weighted residual method[63]. The term $\Gamma(\hat{u}, \hat{p})$ represents the residual error left when the approximate velocity and pressure profiles are substituted into the momentum equation. The basis w_{i} can be thought of as a set of weighting functions. With these interpretations, Eq. (5.16) states that each projection of the error on the finite space spanned by the weighting functions, w_{i} vanishes. The fact that the error is orthogonal to all the members of w_{i} implies that it is minimized with respect to these functions. In the limit as infinitely many projections are taken, the error will be driven to zero everywhere. This follows from the fact that the only function that is orthogonal to all members of a complete set is the function zero itself.

The weighting functions are yet unspecified. The only restrictions imposed on these are that they form a complete set and that $w_{1}=1$. In most cases the weighting functions are chosen to make the integrations as easy as possible. In some cases

[^1]it is possible to choose the weighting functions such that the approximate solution converges to the exact one in an optimal way. Weighting functions from both of these categories are used in this work. More discussion concerning the individual sets of weighting functions will be discussed in a later section.

Let us now return to Eq. (5.16) and see how it provides a set of equations for the scale functions. First consider the residual. If the approximate solutions \hat{u} and \hat{p} are substituted into Eq. (5.9), the right hand side no longer vanishes, but rather will equal some residual error, ϵ

$$
\begin{align*}
\epsilon & =\Gamma\{\hat{u}, \hat{p}\} \\
& =\Lambda\{\hat{u}, \hat{p}\}-\frac{1}{\rho} \frac{\partial \tau}{\partial y} \\
& =\left[\hat{u} \frac{\partial \hat{u}}{\partial c_{j}}-\frac{\partial \hat{u}}{\partial y} \int_{y_{1}}^{y} \frac{\partial \hat{u}}{\partial c_{j}} d y+\frac{1}{\rho} \frac{\hat{p}}{\partial c_{j}}\right] \dot{c_{j}}-\frac{1}{\rho} \frac{\partial \tau}{\partial y} \tag{5.17}
\end{align*}
$$

Note that the residual is linear in the first derivatives of the scale functions. For convenience the residual may be written more compactly as

$$
\begin{equation*}
\epsilon(x, y)=q_{j} \dot{c}_{j}(x)-\frac{1}{\rho} \frac{\partial \tau}{\partial y} \tag{5.18}
\end{equation*}
$$

Now if the above form for the residual is substituted into Eq. (5.16), the following system of equations for the scale functions arises

$$
\begin{equation*}
\dot{c}_{j} \int_{0}^{H} w_{i} q_{j} d y=\frac{1}{\rho} \int_{0}^{H} w_{i} \frac{\partial \tau}{\partial y} d y \quad i=1,2, \ldots, N \tag{5.19}
\end{equation*}
$$

The right hand side is simplified through integration by parts. If the shear due to the boundary layer at the wall is neglected, the above system of equations may be written as

$$
\begin{equation*}
\dot{c}_{j} \int_{0}^{H} w_{i} q_{j} d y=-\int_{0}^{H} \frac{\partial w_{i}}{\partial y} \frac{\tau}{\rho} d y \tag{5.20}
\end{equation*}
$$

This system of equations for the scale functions may be written more compactly in matrix form as

$$
\begin{equation*}
A_{i j} \dot{c}_{j}=b_{i} \tag{5.21}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{i j}=\int_{0}^{H} w_{i} q_{j} d y \tag{5.22}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{i}=-\int_{0}^{H} \frac{\partial w_{i}}{\partial y} \frac{\tau}{\rho} d y \tag{5.23}
\end{equation*}
$$

Since both the shape functions, $q_{j}\left(c_{k}(x), y\right)$, and the weighting functions $w_{i}(y)$ are universal, the integrations can be done once and for all. The resulting matrix and right hand side depend only on the values of the scale functions. The solution is obtained by marching the above system of equations downstream, computing and inverting the matrix at each step.

5.4 Quasi Self-Preserving Velocity Profiles

The approximate velocity profiles used here are formed by making minor modifications to the self-similar profiles observed for free jets. These modifications involve a generalization of the evolution of scaling parameters such as the centerline velocity and the jet half-width. In the self-similar solution, the scaling parameters are rigidly defined functions of the streamwise distance, while in the approximate profiles, these quantities are taken to be general functions of x. As an example, experiments for a two-dimensional free jet[64, page 21] give the following self-similar velocity profile

$$
\begin{equation*}
u(x, y)=3.5 \frac{u_{e x}}{\sqrt{x / t}} \exp \left[-0.693\left(\frac{y}{x / 10}\right)^{2}\right] \tag{5.24}
\end{equation*}
$$

where $u_{e x}$ is the jet exit velocity, and t is the jet exit width. In this expression the centerline velocity decays like the inverse square root of x, while the characteristic width of the jet grows linearly with x. The approximate velocity profiles are made more flexible than this by allowing the scaling parameters to vary with x in a general sense. The above velocity profile is modified accordingly as follows

$$
\begin{equation*}
\hat{u}(x, y)=u_{0}(x)+u_{1}(x) \exp \left[-\left(\frac{\alpha y}{b(x)}\right)^{2}\right] \tag{5.25}
\end{equation*}
$$

where the scale factors u_{0}, u_{1}, and b are functions of x to be determined in the solution process. The shape of the approximate velocity profile is the same as a self

Figure 5.1: Universal nature of the velocity profile. The pressure is related to u_{0} through Bernoulli's equation only in region 1. In region $2 u_{0}$ is a fictitious quantity, and the pressure must be computed directly from the momentum equation.
similar profile, but the evolution of its scale is not restricted to obey the rules for mathematical similarity. For this reason the profiles are called quasi self-preserving.

An important feature of the approximate velocity profile is that it is valid from the jet nozzle all the way to the shroud exit. The velocity profile at each cross-section within the ejector walls is assumed to be the central portion of the velocity profile of an effective jet which develops in an unbounded space. The effective jet is special in the sense that it only satisfies the conservation laws in the region bounded by the channel walls. This idea was suggested by Abramovich[48, page 634], who noticed that experimental data could be rationalized in this way. Figure 5.1 shows the basic idea. The earliest attempts at using the integral method to solve confined jets did not make use of this type of formulation. Consequently, the solutions obtained were either restricted to the inlet region of the duct[61], or unnecessarily complicated by the inclusion of two separate expressions for the velocity profile[62].

A certain amount of confusion is evident in the literature on how to properly
account for the pressure when using the unified velocity profile formulation. To understand the source of difficulty, consider the two regions shown in the sketch of Figure 5.1. In region 1 the real jet and the effective jet are actually the same. Fluid with velocity u_{0}, yet untouched by the primary jet, can be related to the pressure through Bernoulli's equation. That is $p=p_{a t m}-1 / 2 \rho u_{0}^{2}$. This relation is used in region 1 to eliminate the pressure in terms of the external velocity. In region 2 the viscous flow extends all the way across the channel. The velocity profile within this region has the shape of the middle portion of the effective jet which does not acknowledge the presence of the walls. The quantity u_{0} no longer has a physical meaning, but rather is a fictitious quantity that represents the external velocity in the effective profile. The evolution of the velocity profile in region 2 is determined by applying the conservation laws to only that portion of the flow contained within the channel walls. Since it is only the region within the ejector that is required to satisfy the conservation laws, there is not a direct connection between the pressure within the ejector and the fictitious inviscid velocity outside. Application of Bernoulli's equation to relate the pressure to u_{0} in region 2 does not make sense, since it would imply that the pressure within the ejector is governed by the fictitious jet profile and not the properties of the flow within the ejector. In spite of this, there are instances in the literature where Bernoulli's equation is used in this region[54]. The correct way to handle the pressure in region 2 is to include it as an independent unknown quantity in the solution of the momentum equation.

5.5 Eddy Viscosity Hypothesis

The Boussinesq approximation for the turbulent stresses was introduced in Section 5.1. The eddy viscosity coefficient contained in this relation is determined from a suitable Reynolds stress model. In this case a simple algebraic model is used. From dimensional considerations it is evident that the eddy viscosity coefficient is composed of the product of a length and a velocity, that is

$$
\begin{equation*}
\nu_{t} \sim u_{t} l_{t} \tag{5.26}
\end{equation*}
$$

where u_{t} and l_{t} are the characteristic eddy velocity and eddy size respectively. These quantities are not known, but can be estimated from the properties of the mean flow. In this work, the following scaling hypothesis is used

$$
\begin{equation*}
\nu_{t}=k u_{1} b \tag{5.27}
\end{equation*}
$$

where u_{1} is the jet excess velocity and b is the jet excess velocity half-width. Experimental measurements of the Reynolds stresses[47] support this scaling. Tavella[12], who used this same scaling, obtained close agreement with experiments. Tavella determined the constant k by assuming that the spreading rate of the confined jet should reduce to that of a free jet in the close neighborhood of the jet origin. This analysis results in a value of $k=0.0283$. This value is adopted in the present work as well.

5.6 Viscous Solution for the Single-Jet Ejector

For the one jet case, the velocity profile used by Tavella and Roberts [12] is adopted

$$
\begin{equation*}
\hat{u}(x, y)=u_{0}(x)+u_{1}(x) \exp (\eta) \tag{5.28}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta=\frac{\alpha y}{b(x)} \tag{5.29}
\end{equation*}
$$

The constant α is chosen to be $\sqrt{\ln (2)}$, so that b has the interpretation of the excess velocity ($u-u_{0}$) half-width.

In order to justify the use of this profile, Tavella[12] performed a statistical analysis in which the assumed profile shape was compared against experimental data for a confined turbulent jet. He found that the profile fit the data exceptionally well near the nozzle, but degraded slightly toward the end of the channel. In the worst case, however, the fit was still within the scatter of the data. Tavella also tried a more flexible profile in which the exponent was developed in powers of η. This representation did not produce any significant improvement in accuracy, and thus was abandoned in favor of the simpler expression.

The flow variables are symmetric with respect to the jet centerline in the singlejet case, since the jet is issued along the channel symmetry plane. As a result, the jet centerline is confined to remain on the plane of symmetry, and thereby follows a straight trajectory. The radius of curvature of the jet centerline is infinite in this instance, and the transverse momentum equation (Eq. (5.3)) reduces to

$$
\begin{equation*}
\frac{\partial p}{\partial y}=0 \tag{5.30}
\end{equation*}
$$

which implies that the pressure is a function of x alone. Thus

$$
\begin{equation*}
\hat{p}(x, y)=\bar{p}(x) \tag{5.31}
\end{equation*}
$$

5.6.1 Matching Region

Within the viscous-inviscid matching region, the external velocity and the pressure are known from the inviscid solution. With \dot{u}_{0} and $\dot{\bar{p}}$ known, the viscous problem reduces to finding solutions for u_{1} and b. The momentum integral and energy integral equations are use to solve for these two unknowns.

The derivation is simpler if the momentum and energy integral equations are manipulated slightly before substitution of the approximate velocity and pressure profiles. The momentum and energy integral equations may both be written in the following general form

$$
\begin{equation*}
\int_{0}^{H}\left\{u^{n+1} \frac{\partial u}{\partial x}+u^{n} v \frac{\partial u}{\partial y}+u^{n} \frac{1}{\rho} \frac{\partial p}{\partial x}-u^{n} \frac{1}{\rho} \frac{\partial \tau}{\partial y}\right\} d y=0 \tag{5.32}
\end{equation*}
$$

where $n=0$ for the momentum integral equation and $n=1$ for the energy integral equation. After algebraic manipulation and use of the continuity equation, the above relation may be written equivalently as

$$
\begin{align*}
\int_{0}^{H}\{ & \frac{\partial}{\partial x}\left[u\left(\frac{1}{n+1} u^{n+1}+u^{n-1} \frac{1}{\rho} p\right)\right]+\frac{\partial}{\partial y}\left[v\left(\frac{1}{n+1} u^{n+1}+n u^{n-1} \frac{1}{\rho} p\right)\right]- \\
& \left.v\left[n u^{n-1} \frac{\partial p}{\partial y}+n(n-1) u^{n-2} p \frac{\partial u}{\partial y}\right]-\frac{1}{\rho} u^{n} \frac{\partial \tau}{\partial y}\right\} d y=0 \tag{5.33}
\end{align*}
$$

If the upper limit of integration is held fixed, the differentiation with respect to x may be brought outside the integral. The integrals of the derivatives with respect
to y are evaluated assuming that $v(0)=0, \tau(0)=0$, and $\tau(H)=0$. Finally $\frac{\partial p}{\partial y}$ is assumed to be zero and Eq. (5.5) is used to rewrite the turbulent stress in terms of the mean flow quantities. The momentum and energy integral equations then become

$$
\begin{gather*}
\frac{\partial}{\partial x} \int_{0}^{H}\left[u^{2}+\frac{1}{\rho} p\right] d y+u(H) v(H)=0 \tag{5.34}\\
\frac{\partial}{\partial x} \int_{0}^{H}\left[u\left(\frac{1}{2} u^{2}+\frac{1}{\rho} p\right)\right] d y+\left(\frac{1}{2} u^{2}(H)+\frac{1}{\rho} p\right) v(H)=-\nu_{t} \int_{0}^{H}\left(\frac{\partial u}{\partial y}\right)^{2} d y \tag{5.35}
\end{gather*}
$$

Bernoulli's equation is valid for the inviscid portion of the inlet flow. Assuming the vertical component of velocity to be small when compared with the horizontal component, the pressure may be related to the external velocity as follows

$$
\begin{equation*}
\frac{1}{\rho} \bar{p}=\frac{1}{\rho} p_{a t m}-\frac{1}{2} u_{0}^{2} \tag{5.36}
\end{equation*}
$$

Now Eq. (5.28) for the velocity profile, Eq. (5.36) for the pressure profile, and Eq. (5.27) for the eddy viscosity coefficient are substituted into the momentum and energy integral equations (Eqs. (5.34) and (5.35)). The integrations and differentiations are carried out while assuming that $b \ll H$. After some simplification, the following system of equations results

$$
\left[\begin{array}{cc}
a_{11} & a_{12} \tag{5.37}\\
a_{21} & a_{22}
\end{array}\right]\left\{\begin{array}{c}
\dot{u}_{1} \\
\dot{b}
\end{array}\right\}=\left[\begin{array}{cc}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]\left\{\begin{array}{c}
1 \\
\dot{u}_{0}
\end{array}\right\}
$$

where

$$
\begin{align*}
& a_{11}=u_{0}+\sqrt{2} u_{1} \\
& a_{12}=\frac{u_{1}}{b}\left(u_{0}+\frac{\sqrt{2}}{2} u_{1}\right) \\
& a_{21}=\sqrt{2} u_{0}^{2}+3 u_{0} u_{1}+\sqrt{\frac{3}{2}} u_{1}^{2} \\
& a_{22}=\frac{u_{1}}{b}\left(\sqrt{2} u_{0}^{2}+\frac{3}{2} u_{0} u_{1}+\frac{1}{2} \sqrt{\frac{2}{3}} u_{1}^{2}\right) \\
& b_{11}=0 \tag{5.38}\\
& b_{12}=-2 u_{1} \\
& b_{21}=-\frac{k \alpha^{2} u_{1}^{3}}{b} \\
& b_{22}=-u_{1}\left(2 \sqrt{2} u_{0}+\frac{3}{2} u_{1}\right)
\end{align*}
$$

5.6.2 Fully Viscous Region

Within the fully viscous region of the ejector, the external velocity and the pressure are no longer able to be computed from the inviscid solution. The system of viscous equations must be enlarged so that u_{0} and \bar{p} may also be obtained. With the addition of two more unknowns, the momentum integral and energy integral equations alone do not provide enough information to close the system.

One additional equation is derived from the condition that no flow pass through the ejector wall. This condition is stated as

$$
\begin{equation*}
v(x, y=H)=u(x, y=H) \frac{d H}{d x} \tag{5.39}
\end{equation*}
$$

When the above boundary condition is enforced, the system is still one equation short of closure. Closure is obtained through use of the weighted residual method.

The first step in implementing the weighted residual method is to derive the individual terms in the momentum equation from the approximate velocity and pressure profiles. Equations. (5.8), (5.28), (5.31), (5.5), and (5.27) are used to give

$$
\begin{align*}
\frac{\partial \hat{u}}{\partial x} & =\dot{u}_{0}+\exp (\eta) \dot{u}_{1}+2 \frac{u_{1}}{b} \eta^{2} \exp (\eta) \dot{b} \tag{5.40}\\
\hat{v} & =-\frac{b}{\alpha}\left[\eta \dot{u}_{0}+\frac{\sqrt{\pi}}{2} \operatorname{erf}(\eta) \dot{u}_{1}+\frac{u_{1}}{b}\left(\frac{\sqrt{\pi}}{2} \operatorname{erf}(\eta)-\eta \exp (\eta)\right) \dot{b}\right] \tag{5.41}\\
\frac{\partial \hat{u}}{\partial y} & =-2 \frac{\alpha}{b} u_{1} \eta \exp (\eta) \tag{5.42}\\
\frac{\partial \hat{p}}{\partial x} & =\dot{\bar{p}} \tag{5.43}
\end{align*}
$$

The residual is now constructed according to Eq. (5.17)

$$
\begin{align*}
\Lambda\{\hat{u}, \hat{p}\}= & q_{j} \dot{c}_{j} \\
= & {\left[u_{0}+u_{1}\left(1+2 \eta^{2}\right) \exp (\eta)\right] \dot{u}_{0}+} \\
& {\left[u_{0} \exp (\eta)+2 u_{1}\left(\frac{\sqrt{\pi}}{2} \eta \exp (\eta) \operatorname{erf}(\eta)+\frac{1}{2} \exp \left(-2 \eta^{2}\right)\right)\right] \dot{u}_{1}+} \\
& \dot{\bar{p}}+ \tag{5.44}
\end{align*}
$$

$$
\begin{align*}
& 2 \frac{u_{1}}{b}\left[u_{0} \eta^{2} \exp (\eta)+\frac{\sqrt{\pi}}{2} u_{1} \eta \exp (\eta) \operatorname{erf}(\eta)\right] \dot{b} \\
\frac{\tau}{\rho}= & -2 k \alpha u_{1}^{2} \eta \exp (\eta) \tag{5.45}
\end{align*}
$$

The weighting functions are chosen primarily for algebraic convenience. They are simply the power sequence

$$
\begin{equation*}
w_{j}=y^{j-1} \quad j=1,2,3 \tag{5.46}
\end{equation*}
$$

The choice of weighting functions allows the integrations indicated by Eqs. (5.22) and (5.23) to be performed analytically. When the integrals are evaluated, the system of equations may be written as

$$
\left[\begin{array}{clll}
a_{11} & a_{12} & a_{13} & a_{14} \tag{5.47}\\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right]\left\{\begin{array}{c}
\dot{u}_{0} \\
\dot{u}_{1} \\
\dot{p} \\
\dot{b}
\end{array}\right\}=\left\{\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right\}
$$

The first three equations above are formed by weighting the residual with y^{0}, y^{1}, and y^{2} respectively. The fourth equation enforces the flow tangency boundary condition at the wall. With the definitions

$$
\begin{aligned}
\eta_{H} & =\frac{\alpha H}{b} \\
E_{1} & =\exp \left(-\eta_{H}^{2}\right) \\
E_{2} & =\exp \left(-2 \eta_{H}^{2}\right) \\
F_{1} & =\frac{\sqrt{\pi}}{2} \operatorname{erf}\left(\eta_{H}\right) \\
F_{2} & =\frac{1}{2} \sqrt{\frac{\pi}{2}} \operatorname{erf}\left(\sqrt{2} \eta_{H}\right)
\end{aligned}
$$

the individual terms in Eq. (5.47) are
$a_{11}=\frac{b}{\alpha}\left[\left(u_{0}-u_{1} E_{1}\right) \eta_{H}+2 u_{1} F_{1}\right]$

$$
\begin{aligned}
& a_{12}=\frac{b}{\alpha}\left[\left(u_{0}-u_{1} E_{1}\right) F_{1}+2 u_{1} F_{2}\right] \\
& a_{13}=\frac{b}{\alpha}\left[\eta_{H}\right] \\
& a_{14}=\frac{b}{\alpha} \frac{u_{1}}{b}\left[\left(u_{0}-u_{1} E_{1}\right)\left(F_{1}-\eta_{H} E_{1}\right)+u_{1}\left(F_{2}-\eta_{H} E_{2}\right)\right] \\
& a_{21}=\frac{1}{2}\left(\frac{b}{\alpha}\right)^{2}\left[u_{0} \eta_{H}^{2}+u_{1}\left(3\left(1-E_{1}\right)-2 \eta_{H}^{2} E_{1}\right)\right] \\
& a_{22}=\frac{1}{2}\left(\frac{b}{\alpha}\right)^{2}\left[u_{0}\left(1-E_{1}\right)+u_{1}\left(\left(1-E_{2}\right)+F_{1}\left(F_{1}-2 \eta_{H} E_{1}\right)\right)\right] \\
& a_{23}=\frac{1}{2}\left(\frac{b}{\alpha}\right)^{2}\left[\eta_{H}^{2}\right]
\end{aligned}
$$

$$
a_{24}=\frac{1}{2}\left(\frac{b}{\alpha}\right)^{2} \frac{u_{1}}{b}\left[2 u_{0}\left(1-\left(1+\eta_{H}^{2}\right) E_{1}\right)+u_{1}\left(F_{1}\left(F_{1}-2 \eta_{H} E_{1}\right)+\frac{1}{2}\left(1-E_{2}\right)\right)\right]
$$

$$
a_{31}=\left(\frac{b}{\alpha}\right)^{3}\left[\frac{1}{3} u_{0} \eta_{H}^{3}+u_{1}\left(2\left(F_{1}-\eta_{H} E_{1}\right)-\eta_{H}^{3} E_{1}\right)\right]
$$

$$
a_{32}=\left(\frac{b}{\alpha}\right)^{3}\left[\frac{1}{2} u_{0}\left(F_{1}-\eta_{H} E_{1}\right)+u_{1}\left(\frac{1}{2}\left(F_{2}-\eta_{H} E_{2}\right)+F_{2}-\left(1+\eta_{H}^{2}\right) E_{1} F_{1}\right)\right]
$$

$$
a_{33}=\left(\frac{b}{\alpha}\right)^{3}\left[\frac{1}{3} \eta_{H}^{3}\right]
$$

$$
a_{34}=\left(\frac{b}{\alpha}\right)^{3} \frac{u_{1}}{b}\left[u_{0}\left(\frac{3}{2}\left(F_{1}-\eta_{H} E_{1}\right)-\eta_{H}^{3} E_{1}\right)+u_{1}\left(-\left(1+\eta_{H}^{2}\right) E_{1} F_{1}+F_{2}+\frac{1}{4}\left(F_{2}-\eta_{H} E_{2}\right)\right)\right]
$$

$$
a_{41}=\frac{b}{\alpha}\left[\eta_{H}\right]
$$

$$
a_{42}=\frac{b}{\alpha}\left[F_{1}\right]
$$

$$
a_{43}=0
$$

$$
a_{44}=\frac{b}{\alpha} \frac{u_{1}}{b}\left[F_{1}-\eta_{H} E_{1}\right]
$$

$$
\begin{aligned}
& b_{1}=0 \\
& b_{2}=\frac{1}{2}\left(\frac{b}{\alpha}\right)^{2}\left[2 \frac{k \alpha^{2} u_{1}^{2}}{b}\left(1-E_{1}\right)\right] \\
& b_{3}=\left(\frac{b}{\alpha}\right)^{3}\left[2 \frac{k \alpha^{2} u_{1}^{2}}{b}\left(F_{1}-\eta_{H} E_{1}\right)\right] \\
& b_{4}=-\left(\frac{b}{\alpha}\right)^{3}\left[\frac{\alpha}{b} \frac{d H}{d x}\left(u_{0}+u_{1} E_{1}\right)\right]
\end{aligned}
$$

5.7 Viscous Solution for the Dual-Jet Ejector

The velocity profile for the two jet case is constructed from interfering hyperbolic functions

$$
\begin{align*}
\hat{u}(x, y)= & u_{0}(x)+\frac{1}{2} a(x)\left[\tanh \left(\eta+\eta_{1}\right)-\tanh \left(\eta-\eta_{1}\right)\right]+ \\
& u_{1}(x)\left[\operatorname{sech}^{2}\left(\eta+\eta_{1}\right)+\operatorname{sech}^{2}\left(\eta-\eta_{1}\right)\right] \tag{5.48}
\end{align*}
$$

where

$$
\begin{equation*}
\eta=\frac{\alpha y}{b(x)} \tag{5.49}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{1}=\frac{\alpha y_{1}(x)}{b(x)} \tag{5.50}
\end{equation*}
$$

The shape of the profile is shown in Figure 5.2. The parameter $y_{1}(x)$ represents the location of the jet centerline, $u_{0}(x)$ the external velocity at the ejector wall, $u_{0}(x)+a(x)$ the external velocity at the channel centerline, $u_{1}(x)$ the jet excess velocity, and $b(x)$ the jet excess velocity half-width. The hyperbolic secant functions are patterned after the self-similar solution to a free jet [64, page 19]. The hyperbolic tangent functions are used to allow for unequal secondary flow velocity on either side of the jets. In this case the constant $\alpha=\cosh ^{-1}(\sqrt{2})$.

In the two jet case, the lack of symmetry in the secondary flow with respect to the jet centerline allows a pressure difference to develop across the jets. The pressure is therefore not constant within the layer, but rather develops some profile

Figure 5.2: Velocity profile for the dual-jet ejector
in making the transition from the external pressure on either side. An approximate expression for this profile that satisfies Bernoulli's equation on either side of the jet is

$$
\begin{equation*}
\hat{p}(x, y)=\bar{p}-\frac{1}{2} \rho a\left(u_{0}+1 / 2 a\right)\left[\tanh \left(\eta+\eta_{1}\right)-\tanh \left(\eta-\eta_{1}\right)-1\right] \tag{5.51}
\end{equation*}
$$

where the average pressure \bar{p} is defined as

$$
\begin{equation*}
\bar{p}=p_{a t m}-\frac{1}{2} \rho\left(u_{0}^{2}+u_{0} a+1 / 2 a^{2}\right) \tag{5.52}
\end{equation*}
$$

5.7.1 Matching Region

Within the viscous-inviscid matching region, the jet centerlines follow curved trajectories as a result of the non-uniform pressure field developed by the secondary flow. The boundary layer equations still apply in the case of a moderately curved layer provided they are written in a curvilinear coordinate system. If s and n are the directions of a curvilinear coordinate system that is locally tangent to the jet
centerline, the boundary layer equations may be recast as follows

$$
\begin{gather*}
\frac{\partial u}{\partial s}+\frac{\partial v}{\partial n}=0 \tag{5.53}\\
u \frac{\partial u}{\partial s}+v \frac{\partial u}{\partial n}+\frac{1}{\rho} \frac{\partial p}{\partial s}=\frac{1}{\rho} \frac{\partial \tau}{\partial n} \tag{5.54}\\
\frac{\partial p}{\partial n}=\frac{\rho u^{2}}{R} \tag{5.55}
\end{gather*}
$$

The velocity and pressure profiles must also be recast in the curvilinear coordinate system. In considering the jet that lies in the upper half-plane, the following transformation is used to rewrite the expressions for the velocity and pressure profiles in terms of a coordinate system that is everywhere tangent to the jet centerline

$$
\begin{align*}
x & \rightarrow s \tag{5.56}\\
y-y_{1} & \rightarrow n \tag{5.57}
\end{align*}
$$

With the assumption that $y+y_{1} \gg b$, the velocity and pressure profiles become

$$
\begin{gather*}
\hat{u}(s, n)=u_{0}(s)+\frac{1}{2} a(s)[1-\tanh (\zeta)]+u_{1}(s) \operatorname{sech}^{2}(\zeta) \tag{5.58}\\
\hat{p}=\bar{p}(s)+\frac{1}{2} \rho a(s)\left(u_{0}(s)+1 / 2 a(s)\right) \tanh (\zeta) \tag{5.59}
\end{gather*}
$$

where

$$
\begin{equation*}
\zeta=\frac{\alpha n}{b} \tag{5.60}
\end{equation*}
$$

Within the viscous-inviscid matching region u_{0}, a, and \bar{p} can be deduced from the inviscid solution. The viscous problem therefore reduces to finding solutions for u_{1}, b, and y_{1}. As in the single-jet case, the momentum and energy integral equations are used to provide equations for u_{1} and b. An equation for y_{1} is derived from the normal momentum equation.

Due to lack of symmetry with respect to the jet centerline in the dual-jet case, the integrals in the momentum and energy integral equations must extend on both sides of the jet centerline. Analogous to Eqs. (5.34) and (5.35), the momentum
and energy integral equations for the dual-jet ejector written in the curvilinear coordinate system are

$$
\begin{align*}
& \frac{\partial}{\partial s} \int_{-H / 2}^{H / 2}\left[u^{2}+\frac{1}{\rho} p\right] d n+u(H / 2) v(H / 2)-u(-H / 2) v(-H / 2)=0 \tag{5.61}\\
& \frac{\partial}{\partial s} \int_{-H / 2}^{H / 2}\left[u\left(\frac{1}{2} u^{2}+\frac{1}{\rho} p\right)\right] d n-\frac{1}{\rho} \int_{-H / 2}^{H / 2} v \frac{\partial p}{\partial n} d n+ \\
& v(H / 2)\left(\frac{1}{2} u^{2}(H / 2)+\frac{1}{\rho} p(H / 2)\right)-v(-H / 2)\left(\frac{1}{2} u^{2}(-H / 2)+\frac{1}{\rho} p(-H / 2)\right) \\
& =-\nu_{t} \int_{-H / 2}^{H} / 2\left(\frac{\partial u}{\partial n}\right)^{2} d n \tag{5.62}
\end{align*}
$$

Calculation of the Jet Trajectory

As stated in Eq. (5.3) the pressure difference acting across the jets results in a curvature of their centerlines. Since the pressure difference across the jet is known from the inviscid solution, Eq. (5.55) may be integrated across the jet to yield an expression for the curvature of the jet centerline

$$
\begin{equation*}
\kappa \equiv \frac{1}{R}=\frac{\Delta p}{J} \tag{5.63}
\end{equation*}
$$

where

$$
\begin{align*}
\Delta p & =\frac{1}{2} \rho a\left(2 u_{0}+a\right) \tag{5.64}\\
J & =\rho \int_{-2.5 b}^{2.5 b} u^{2} d n \tag{5.65}
\end{align*}
$$

The curvature of the jet centerline is also related to the derivatives of $y_{1}(x)$

$$
\begin{equation*}
\kappa=\frac{\ddot{y}_{1}}{\left(1+\dot{y}_{1}^{2}\right)^{3 / 2}} \tag{5.66}
\end{equation*}
$$

With the definition $q=\dot{y}_{1}$, the above equation may be written as the following two first order differential equations that govern the jet trajectory

$$
\begin{align*}
& \dot{y}_{1}=q \tag{5.67}\\
& \dot{q}=\kappa\left(1+q^{2}\right)^{3 / 2}
\end{align*}
$$

These two equations together with Eq. (5.63) are integrated along with the rest of the equations for the viscous solution.

System of Equations

Equations. (5.58) and (5.59) for the velocity and pressure profiles respectively are substituted into the momentum and energy integral equations (Eqs. (5.61) and (5.62)) and the integrations and differentiations carried out assuming $H / 2 \gg b$. The results of these operations are combined with Eq. (5.67) to give

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & 0 & 0 \tag{5.68}\\
a_{21} & a_{22} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left\{\begin{array}{c}
\dot{u}_{1} \\
\dot{b} \\
\dot{y}_{1} \\
\dot{q}
\end{array}\right\}=\left[\begin{array}{ccc}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & 0 & 0 \\
b_{41} & 0 & 0
\end{array}\right]\left\{\begin{array}{c}
1 \\
\dot{u}_{0} \\
\dot{a}
\end{array}\right\}
$$

where

$$
\begin{aligned}
& a_{11}=u_{0}+\frac{4}{3} u_{1}+\frac{1}{2} a \\
& a_{12}=\frac{1}{b}\left[u_{1}\left(u_{0}+\frac{2}{3} u_{1}+\frac{1}{2} a\right)-\frac{1}{4}\left(1-\frac{\ln 2}{2}\right) a^{2}\right] \\
& a_{21}=2 u_{0}\left(u_{0}+2 u_{1}+a\right)+u_{1}\left(\frac{8}{5} u_{1}+2 a\right)+\frac{1}{2} a^{2} \\
& a_{22}=\frac{1}{b}\left\{u_{1}^{2}\left(2 u_{0}+\frac{8}{15} u_{1}+a\right)+2 u_{0} u_{1}\left(u_{0}+a\right)+\frac{1}{2} a^{2}\left[-\left(1-\frac{\ln 2}{2}\right)\left(u_{0}+\frac{1}{2} a\right)+u_{1}\right]\right\} \\
& b_{11}=0 \\
& b_{12}=-2 u_{1} \\
& b_{13}=-u_{1}+\frac{1}{2}\left(1-\frac{\ln 2}{2}\right) a \\
& b_{21}=-\frac{k \alpha^{2} u_{1}}{b}\left(\frac{16}{15} u_{1}^{2}+\frac{1}{3} a^{2}\right) \\
& b_{22}=-2 u_{1}\left(2 u_{0}+u_{1}+a\right)+\frac{1}{4} a^{2} \\
& b_{23}=-u_{1}\left(u_{1}+2 u_{0}+a\right)+\left(1-\frac{\ln 2}{2}\right) a\left(u_{0}+\frac{1}{2} a\right)+\frac{1}{8} a^{2} \\
& b_{31}=q
\end{aligned}
$$

$b_{41}=\frac{\frac{1}{2} a\left(2 u_{0}+a\right)}{2 \frac{b}{\alpha}\left[\frac{2}{3} u_{1}^{2}+2 u_{0} u_{1}+u_{1} a-\frac{1}{4} a^{2}\right]}\left[1+q^{2}\right]^{3 / 2}$

The vertical component of velocity for the matching region is found from Eqs. (5.53) and (5.58)

$$
\begin{align*}
v= & -\int_{0}^{n} \frac{\partial u}{\partial s} d n \\
= & -\frac{b}{\alpha}\left\{\zeta \dot{u}_{0}+\tanh (\zeta) \dot{u}_{1}-\frac{1}{2}(\ln \cosh (\zeta)-\zeta) \dot{a}+\right. \tag{5.69}\\
& \left.\frac{1}{b}\left[u_{1} \zeta \tanh ^{2}(\zeta)+\left(u_{1}+\frac{1}{2} a \zeta\right) \tanh (\zeta)-\frac{1}{2} a \ln \cosh (\zeta)-u_{1} \zeta\right] \dot{b}\right\} \tag{5.70}
\end{align*}
$$

5.7.2 Fully Viscous Region

Within the fully viscous region of the ejector, the inviscid solution no longer provides the information to determine u_{0}, a, and y_{1}. As in the single-jet case, the method of weighted residuals is used to generate additional equations for these unknowns. Unlike the single-jet case, however, the integrals that arise in the fully viscous region of the dual-jet ejector are quite difficult to evaluate analytically. For this reason, the integrals are evaluated numerically at each streamwise location. When an efficient Simpson's rule algorithm is used to perform the integrations, the time required to compute the fully viscous portion of the flow is still quite small.

The fully viscous region begins far enough inside the ejector to assume that the pressure has become uniform across the channel. The jet trajectories correspondingly are no longer curved, but rather follow straight trajectories. It is therefore appropriate to return to a cartesian coordinate system. The velocity profile is given by Eq. (5.48) and the pressure profile reduces to

$$
\begin{equation*}
\hat{p}(x, y)=\bar{p}(x) \tag{5.71}
\end{equation*}
$$

The weighting functions are chosen in this instance to minimize the integrated square of the error. Using Eq. (5.18), the integrated square of the error may be
written as

$$
\begin{equation*}
\int_{0}^{H} \epsilon^{2} d y=\int_{0}^{H}\left[\left(q_{j} \dot{c}_{j}\right)^{2}-2\left(q_{j} \dot{c}_{j}\right) \frac{1}{\rho} \frac{\partial \tau}{\partial y}+\left(\frac{1}{\rho} \frac{\partial \tau}{\partial y}\right)^{2}\right] d y \tag{5.72}
\end{equation*}
$$

Now the integrated square of the error is minimized by requiring that it be stationary with respect to the \dot{c}_{j}.

$$
\begin{equation*}
\frac{\partial}{\partial \dot{c}_{i}} \int_{0}^{H} \epsilon^{2} d y=2 \int_{0}^{H} q_{i}\left[q_{j} \dot{c}_{j}-\frac{1}{\rho} \frac{\partial \tau}{\partial y}\right] d y=0 \tag{5.73}
\end{equation*}
$$

or after integrating the stress term by parts assuming that $\tau(0)=\tau(H)=0$

$$
\begin{equation*}
\dot{c}_{j} \int_{0}^{H} q_{i} q_{j} d y=-\int_{0}^{H} \frac{\partial q_{i}}{\partial y} \frac{\tau}{\rho} d y \tag{5.74}
\end{equation*}
$$

The residual is now constructed from Eqs. (5.48) and (5.71). With the definitions

$$
\begin{aligned}
& A_{1}=\eta+\eta_{1} \\
& A_{2}=\eta-\eta_{1} \\
& T_{1}=\tanh \left(\eta+\eta_{1}\right) \\
& T_{2}=\tanh \left(\eta-\eta_{1}\right) \\
& S_{1}=\operatorname{sech}^{2}\left(\eta+\eta_{1}\right) \\
& S_{2}=\operatorname{sech}^{2}\left(\eta-\eta_{1}\right) \\
& Q_{1}=\ln \cosh \left(\eta+\eta_{1}\right) \\
& Q_{2}=\ln \cosh \left(\eta-\eta_{1}\right)
\end{aligned}
$$

the derivatives of the velocity and pressure profile are

$$
\begin{aligned}
\frac{\partial \hat{u}}{\partial x}= & \dot{u}_{0}+\left(S_{1}+S_{2}\right) \dot{u}_{1}+\frac{1}{2}\left(T_{1}-T_{2}\right) \dot{a}+ \\
& \frac{1}{b}\left[\frac{1}{2} a\left(-A_{1} S_{1}+A_{2} S_{2}\right)+2 u_{1}\left(A_{1} T_{1} S_{1}+A_{2} T_{2} S_{2}\right)\right] \dot{b}+ \\
& \frac{\alpha}{b}\left[\frac{1}{2} a\left(S_{1}+S_{2}\right)+2 u_{1}\left(-T_{1} S_{1}+T_{2} S_{2}\right)\right] \dot{y}_{1}
\end{aligned}
$$

$$
\begin{aligned}
\hat{v}= & -\frac{b}{\alpha}\left\{\eta \dot{u}_{0}+\left(T_{1}+T_{2}\right) \dot{u}_{1}+\frac{1}{2}\left(Q_{1}-Q_{2}\right) \dot{a}+\right. \\
& \frac{1}{b}\left[\frac{1}{2} a\left(-A_{1} T_{1}+Q_{1}+A_{2} T_{2}-Q_{2}\right)+u_{1}\left(-A_{1} S_{1}+T_{1}-A_{2} S_{2}+T_{2}\right)\right] \dot{b}+ \\
& {\left.\left[\frac{1}{2} a\left(T_{1}+T_{2}\right)+u_{1}\left(S_{1}-S_{2}\right)\right] \dot{y}_{1}\right\} } \\
\frac{\partial \hat{u}}{\partial y}= & -\frac{\alpha}{b}\left[\frac{1}{2} a\left(-S_{1}+S_{2}\right)+2 u_{1}\left(T_{1} S_{1}+T_{2} S_{2}\right)\right] \\
\frac{\partial \hat{p}}{\partial x}= & \dot{\bar{p}}
\end{aligned}
$$

Let the elements of q_{j} be denoted as $q_{u_{0}}, q_{u_{1}}, q_{p}$, etc., then

$$
\begin{aligned}
q_{u_{0}}= & \hat{u}-\frac{b}{\alpha} \eta \\
q_{u_{1}}= & \left(S_{1}+S_{2}\right) \hat{u}-\frac{b}{\alpha}\left(T_{1}+T_{2}\right) \frac{\partial \hat{u}}{\partial y} \\
q_{p}= & 1 \\
q_{a}= & \frac{1}{2}\left(T_{1}-T_{2}\right) \hat{u}-\frac{1}{2} \frac{b}{\alpha}\left(Q_{1}-Q_{2}\right) \frac{\partial \hat{u}}{\partial y} \\
q_{b}= & \frac{1}{b}\left[\frac{1}{2} a\left(-A_{1} S_{1}+A_{2} S_{2}\right)+2 u_{1}\left(A_{1} T_{1} S_{1}+A_{2} T_{2} S_{2}\right)\right] \hat{u} \\
& -\frac{1}{\alpha}\left[\frac{1}{2} a\left(-A_{1} T_{1}+Q_{1}+A_{2} T_{2}-Q_{2}\right)+u_{1}\left(-A_{1} S_{1}+T_{1}-A_{2} S_{2}+T_{2}\right)\right] \frac{\partial \hat{u}}{\partial y} \\
q_{y_{1}}= & \frac{\alpha}{b}\left[\frac{1}{2} a\left(S_{1}+S_{2}\right)+2 u_{1}\left(-T_{1} S_{1}+T_{2} S_{2}\right)\right] \hat{u}- \\
& {\left[\frac{1}{2} a\left(T_{1}+T_{2}\right)+u_{1}\left(S_{1}-S_{2}\right)\right] \frac{\partial \hat{u}}{\partial y} }
\end{aligned}
$$

As in the single-jet case, it is necessary to enforce a flow tangency boundary condition at the ejector wall. The condition is

$$
\begin{equation*}
v(x, y=H)=u(x, y=H) \frac{d H}{d x} \tag{5.75}
\end{equation*}
$$

The need to enforce this boundary condition requires that one of the equations from the weighted residual method be removed from the system. A bit of experimentation
has shown that the conditioning of the system is best if the equation formed with $q_{u_{0}}$ as the weighting function is replaced with the flow tangency boundary condition. When the integrals are evaluated, the system of equations may be written as

$$
\left[\begin{array}{cccccc}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & a_{16} \tag{5.76}\\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & a_{26} \\
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36} \\
a_{41} & a_{42} & a_{43} & a_{44} & a_{45} & a_{46} \\
a_{51} & a_{52} & a_{53} & a_{54} & a_{55} & a_{56} \\
a_{61} & a_{62} & a_{63} & a_{64} & a_{65} & a_{66}
\end{array}\right]\left\{\begin{array}{c}
\dot{u}_{0} \\
\dot{u}_{1} \\
\dot{\bar{p}} \\
\dot{a} \\
\dot{b} \\
\dot{y}_{1}
\end{array}\right\}=\left\{\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
b_{5} \\
b_{6}
\end{array}\right\}
$$

The first five equations are formed by weighting the residual with $q_{u_{1}}, q_{p}, q_{a}, q_{b}$, and $q_{y_{1}}$ respectively, while the last equation enforces the flow tangency boundary condition at the ejector wall.

Chapter 6

Viscous-Inviscid Matching Procedure

6.1 Iteration Scheme

The goal of the viscous-inviscid matching is to obtain viscous and inviscid solutions that are compatible at their common boundary. Compatibility is achieved when the pressure and velocity fields are continuous at the zonal interface. In order to arrive at compatibility, the viscous and inviscid solutions are allowed to influence each other in an iterative process where information is exchanged at the common boundary. This process simulates the physical viscous-inviscid interaction that is taking place within the ejector. The iterative process must be carefully designed such that it allows each flow region to influence the other, and yet remain both stable and computationally efficient even when the interaction is intense.

In the ejector problem there are two areas where a matching must be done. The first is a matching of velocity and pressure fields along the jet boundary, while the second is a matching of the ejector exit pressure to the atmospheric value. Matching of the flow variables along the jet boundary involves finding the correct distribution of jet entrainment. Matching of the exit pressure is achieved when the value of the primary jet momentum flux is consistent with an assumed value of the ejector inlet pressure. These two matching processes are intertwined, since the value of

Figure 6.1: Viscous-Inviscid interaction scheme.
the primary jet momentum affects the evolution of the jet, while the interaction between the jet and inviscid flow ultimately affects the ejector exit pressure. The overall iteration scheme is constructed in a nested fashion where an inner loop converges the flow variables at the jet boundary and an outer loop converges the exit pressure.

In the viscous-inviscid loop, the inviscid solution provides both the external velocity, u_{0}, and the pressure, \bar{p}, to be used as boundary conditions in the viscous solution. Once the viscous flow is computed, the jet entrainment velocity is passed to the inviscid region, where it is used to update the suction applied to the panels covering the jet boundary. A new inviscid solution is then calculated, and the cycle repeats. Figure 6.1 illustrates the concept. Convergence is monitored by comparing the distribution of entrainment assumed in the inviscid solution with the actual entrainment computed by the viscous solution.

In the exit pressure matching loop, an initial guess for the primary jet momentum is made. Next the viscous-inviscid matching is performed. The viscous solution is
then marched all the way to the ejector exit. The computed exit pressure does not in general agree with the atmospheric value. Accordingly, an adjustment is made to the primary jet momentum flux, and the cycle repeats. Figure 6.2 illustrates the concept. Convergence is achieved in the outer loop when the difference between the exit and atmospheric pressure is negligible.

The matching procedures for both the single and dual jet ejectors are essentially the same. The dual jet case, however, is complicated by the additional interaction which takes place between the two jets. This interaction is manifested both by the effects of jet curvature and by the asymmetric entrainment with respect to the jet centerline. The matching procedures for the one and two jet ejector are described separately below.

6.2 Matching Procedure for the Single-Jet Ejector

6.2.1 Viscous-Inviscid Matching

The ejector flow field is symmetric with respect to the channel centerline. To minimize effort, only the upper half of the of the flow field is solved. The viscous-inviscid matching is therefore contained to the upper half of the boundary between the jet and the inviscid stream. The geometry for the upper half-plane of the inviscid solution was discussed in Section 4.4. The effect of the jet entrainment on the inviscid field is simulated by applying suction to the panels which cover the jet boundary, while the lowered pressure within the inlet is simulated by applying suction to the control station. The matching process determines the distribution of panel suction that makes the viscous and inviscid regions are compatible. The procedure is to iterate between the inviscid horizontal component of velocity and the viscous entrainment. To start the process, an initial guess for the jet entrainment is made, and the panel suction velocities are set accordingly. The inlet suction applied at the control station is a parameter in the exit pressure matching and is assigned a fixed arbitrary value. The inviscid problem is solved, and the velocity components as well as the pressure along the jet boundary are calculated. The quantities \dot{u}_{0} and

Figure 6.2: Exit pressure matching.
$\dot{\bar{p}}$ are then formed and sent to the viscous region as forcing terms (see Eq. (5.37)). The viscous problem is solved, and the jet entrainment velocity computed via Eq. (5.41). At this point the velocity and pressure fields are compared at the viscousinviscid interface. The horizontal component of velocity as well as the pressure are already continuous at the interface, since these quantities were extracted from the inviscid solution and transferred directly to the viscous solution through the boundary conditions. The vertical component of velocity, however, will in general not be continuous. Let $v_{v i s}$ be the entrainment velocity computed by the viscous solution, $v_{\text {inv }}$ be the entrainment velocity computed by the inviscid solution, and V_{n} the suction velocity applied to the panel where the entrainment is being calculated. Then the following relaxation scheme is used for each panel to produce a correction to its suction velocity

$$
\begin{equation*}
V_{n}^{n+1}=V_{n}^{n}+\omega\left(v_{v i,}-v_{i n v}\right) \tag{6.1}
\end{equation*}
$$

Once the correction is made for each of the panels, a new inviscid solution is generated and the whole process repeated.

The parameter ω in Eq. (6.1) is a relaxation factor that is needed to maintain stability. The iteration scheme is only stable if the relaxation factor is allowed to vary with x. The viscous calculation becomes more sensitive to changes in the external inviscid field as the distance from the jet origin is increased. For this reason it is necessary to increase the damping with the streamwise distance. The following linear variation in the relaxation factor is sufficient to control the stability

$$
\begin{equation*}
\omega=\left[r-t\left(\frac{x-x_{0}}{x_{c s}-x_{0}}\right)\right] \tag{6.2}
\end{equation*}
$$

where

$$
\begin{equation*}
r=1.0, \quad t=0.7 \tag{6.3}
\end{equation*}
$$

Here x_{0} is the position of the jet nozzle and $x_{c s}$ is the position of the control station, where the viscous-inviscid matching is terminated. While this scheme is under relaxed over most of the jet trajectory, it still converges quite rapidly. Typically four cycles are needed to match the entrainment velocity to within three significant figures. The scheme is also surprisingly robust. No stability problems have been encountered for a wide range of test conditions.

6.2.2 Exit Pressure Matching

Once the viscous-inviscid matching is complete, the remainder of the viscous flow within the channel is computed by marching the system of equations given in Eq. (5.47). The pressure computed at the exit will in general differ from the atmospheric value. An improvement is made by adjusting the primary jet momentum flux.

For a given geometry, the exit pressure depends only on the primary jet momentum flux and the magnitude of the suction applied to the control station. The primary jet momentum flux in turn is specified by an initial velocity, $u_{1_{0}}$, while the control station suction is specified by the the velocity $u_{c s}$. These are the only two relevant velocity scales in the problem. The exit pressure must therefore depend on the ratio $u_{1_{0}} / u_{c s}$. Consequently, it is sufficient to vary either one of these quantities while holding the other fixed. It is most convenient to hold $u_{c s}$ fixed and vary just the initial jet velocity $u_{1_{0}}$.

A Newton-type iteration is used to converge the exit pressure. First define

$$
\begin{gather*}
f^{n}=\left(p_{e x i t}^{n}-p_{a t m}^{n}\right) \tag{6.4}\\
f^{\prime n}=\frac{f^{n}-f^{n-1}}{u_{10}^{n}-u_{10}^{n-1}} \tag{6.5}
\end{gather*}
$$

Then the iteration scheme is

$$
\begin{equation*}
u_{1_{o}}^{n+1}=u_{1_{0}}^{n}-\omega f^{n} \tag{6.6}
\end{equation*}
$$

where

$$
\omega= \begin{cases}\omega_{0} & n=1 \tag{6.7}\\ 1 / f^{\prime n} & n>1\end{cases}
$$

and where

$$
\begin{equation*}
\omega_{0} \simeq 0.1 \tag{6.8}
\end{equation*}
$$

Notice that the Newton scheme needs data at two iteration levels. Provision is made for this by incorporating a simple one level scheme for the first step. This iteration scheme converges quite rapidly. Typically four cycles are necessary to converge the exit pressure to the atmospheric value within three significant figures.

The entire iteration process is now complete. A summary of the method is shown schematically in Figure 6.3.

Figure 6.3: Iteration scheme for the single jet ejector. Note how the viscous-inviscid matching loop is nested within the exit pressure matching loop.

6.3 Matching Procedure for the Dual-Jet Ejector

The matching procedure for the dual-jet ejector is conceptually the same as the single-jet case. The procedure is somewhat more complicated by the need to account for the jet curvature and unequal entrainment on either side of the jet. Accordingly, the viscous-inviscid matching procedure contains an additional loop for converging jet trajectories. The exit pressure matching loop is unchanged.

6.3.1 Viscous-Inviscid Matching

Unlike the single-jet ejector, the jets in the dual-jet ejector are not issued along the channel symmetry plane. With no geometric symmetry imposed at their centerlines, the jets have the freedom do develop asymmetric characteristics. Both curvature of the jet centerline and unequal entrainment on the two sides of the jet are additional effects which the viscous-inviscid interaction scheme for the dual-jet ejector must account for.

While the flow is not expected to be symmetric with respect to the individual jet centers, the overall flow is still symmetric with respect to the channel symmetry plane. As in the single-jet case, it is again sufficient to consider only the upper half of the ejector channel. The upper half-plane now contains one entire jet as opposed to the half jet encountered previously. Both the upper and lower surfaces of this jet must be treated separately, since in the absence of symmetry, the viscous-inviscid interaction taking place at the upper surface is different from the interaction taking place at the lower surface. Accordingly, the iteration scheme is extended accordingly to separately match the viscous and inviscid solutions at upper and lower interfaces.

The procedure for matching both sides of the jet is patterned after the onesided matching done in the single-jet case. The suction velocities for the panels covering both sides of the jet are initially set to reflect an initial guess for the jet entrainment. The suction velocities applied to both the lower and upper control stations are set to the same fixed value. The inviscid problem is then solved, and the velocity components as well as the pressure at both the upper and lower side of the jet boundary calculated. Next the quantities \dot{u}_{0}, \dot{a}, and $\dot{\bar{p}}$ are determined. These
terms are then used as boundary conditions in the solution of the viscous region (see Eq. (5.68)). Once the viscous solution is complete, the entrainment velocity at both the upper and lower interfaces are calculated. Finally, corrections to the panel suction velocities on both the upper and lower sides of the jet are made with the same iteration scheme given in Eq. (6.1). The cycle is repeated until the flow variables are continuous at both the upper and lower viscous-inviscid interfaces.

6.3.2 Exit Pressure Matching

The exit pressure matching procedure for the dual-jet ejector is exactly the same as that used in the single-jet case.

6.3.3 Determination of the Jet Trajectory

A new procedure needs to be introduced to account for the jet curvature. As discussed in Section 5.7.1, the jets curve in response to the pressure difference acting across them. The actual path of the jets is not known a priori, but rather must be determined as part of the solution. This requires an additional iteration loop to be built around the exit pressure matching and viscous-inviscid matching loops.

The viscous-inviscid interfaces are curved in proportion to the curvature of the jet centerline. The inviscid solution must account for this by distributing the panels which cover the jet boundary over an appropriately curved surface. The shape of this surface is not known ahead of time since it is dependent on the yet unknown distribution of pressure within the ejector inlet. The panels that form the viscousinviscid interfaces must be free to move during the iteration process so that the jet trajectory remains compatible with the rest of the solution. The procedure used here is to initially guess the jet trajectory. The panels are laid out accordingly and both the viscous-inviscid and exit pressure matchings done. When the provisional solution is complete, the computed jet trajectory is compared with the initial guess. If the vertical distance between the two exceeds a specified tolerance at any point, the newly computed trajectory is used as the initial guess for the next iteration.

This process converges rapidly. It is a rare case where more than two cycles are needed to converge the jet trajectory. A summary of the overall iteration strategy for the dual-jet ejector is shown in Figure 6.4.

Figure 6.4: Iteration scheme for the dual-jet ejector. Note three levels of nesting.

Chapter 7

Results

In this chapter the predictions of the viscous-inviscid ejector algorithm are carefully examined. In an effort to validate the computer code, the results predicted for the single-jet ejector are compared against experimental data. The computations are then extended to an investigation of the effect of ejector geometry on performance. This is done for both the single-jet and dual-jet ejectors by systematically varying the primary nozzle position, ejector length, free stream speed, diffuser angle, and diffuser slope. The results of the parametric studies for the single-jet ejector are compared with experimental data for qualitative agreement. Finally, the computer code is used as a subroutine to an optimization package to demonstrate the suitability of the algorithm to practical design problems.

In all cases the results are presented in non-dimensional form where the thrust augmentation ratio, defined as

$$
\begin{equation*}
\phi=\frac{\text { Total Ejector Thrust }}{\text { Thrust of an Identical Nozzle Issued in Isolation }} \tag{7.1}
\end{equation*}
$$

is plotted against non-dimensional forms of the individual parameters.

7.1 Comparison With Experiment

The predictions of the viscous-inviscid algorithm are compared with a series of measurements taken by Bernal and Sarohia[47] at the Jet Propulsion Laboratories

Figure 7.1: Experimental configuration. $L / 2 H=3.25, x_{j} / 2 H=1.0, d / 2 H=0.5$, $U_{\infty}=0.0$
in 1982. Figure 7.1 shows a cross-section of the two-dimensional test configuration. The ejector shroud is composed of two thick flat plates with semi-circular leading edges. The plates are spaced so that the length to width ratio of the mixing chamber is 3.25 . The primary nozzle is displaced one channel-width in front of the ejector. The jet exit Mach number is 0.3 in the experiment and no free stream is present.

7.1.1 Surface Pressure

Figure 7.2 shows a comparison between the measured and computed distribution of the ejector surface pressure. The results are presented in non-dimensional form where the surface pressure coefficient, defined as

$$
\begin{equation*}
C_{p}=\frac{p-p_{\infty}}{T_{0} / 2 H} \tag{7.2}
\end{equation*}
$$

is plotted against the normalized surface coordinate. The viscous-inviscid algorithm does a good job at capturing the suction peak resulting from the acceleration of the

$$
C_{p}=\frac{p-p_{\infty}}{T_{0} / 2 H}
$$

Figure 7.2: Surface Pressure Comparison. $C_{p}=\frac{p-p_{\infty}}{T_{0} / 2 H}$

Figure 7.3: Comparison of the jet velocity profiles
secondary fluid as it flows around the shroud leading edge. The computed results also accurately predict the pressure recovery that results from the dissipation of momentum within the mixing region of the ejector channel. The fact that the conversion of the primary jet momentum to pressure is accurately predicted suggests that the simple algebraic turbulence model is doing an adequate job of simulating the turbulent shearing stresses.

7.1.2 Velocity Profile Evolution

Shown in Figure 7.3 is a comparison of the computed and measured velocity profiles within the ejector channel. The viscous-inviscid algorithm accurately predicts the jet spreading as well as the decay of the maximum velocity. The correct prediction

Table 7.1: Thrust augmentation ratio comparison
of the jet growth provides additional justification for the use the algebraic turbulence model. Agreement in the shape of the velocity profiles demonstrates that the gaussian exponential velocity profile shape chosen for the viscous calculation is a good choice for representing the physics of the single-jet ejector flow.

7.1.3 Thrust Augmentation Ratio

The computed value of the thrust augmentation ratio is compared with the experimental value in Table 7.1. The good agreement demonstrates that the viscousinviscid algorithm accurately models the overall ejector mixing process. The fact that the computed result is 5 percent higher than the experimental result could be attributed to the lack of account for skin friction in the computation.

Now with the results of the computation validated against experimental data, a series of parametric and optimizations are performed.

7.2 Parametric Studies

The effects of varying several geometrical parameters is investigated by perturbing the configuration that was used for the comparison with experiment. Unfortunately the experimental tests at JPL did not include any such geometrical parametric variations. Other experimentalists[1] have published data showing the effects of variation in one or two geometrical parameters. Outside of these limited results, there does not seem to exist a cohesive set of experimental data where a single configuration is subjected to systematic variations in several different geometric parameters. For
this reason it is difficult to make a direct comparison of the computed results with experimental data when a large number of parameters are systematically varied. It is possible, however, to make a qualitative comparison with the available experimental data. The experimental data must be drawn from several independent tests that involve different basic geometrical configurations. No attempt is made to tailor the computational geometry to match each of these individual tests, but rather the basic computational geometry is held fixed and comparisons are made to show similar trends as opposed to exact agreement. Experimental data is more abundant for single-jet configurations and thus comparisons are made for this case only.

7.2.1 Parameters Varied

Figure 7.4 shows the geometrical parameters that are varied for both the single-jet and dual-jet ejectors. In non-dimensional form the parameters are: longitudinal nozzle placement, $x_{j} / 2 H$, ejector length, $L / 2 H$, free stream speed, $\gamma^{2}=\rho U_{\infty}^{2} H / T_{0}$, diffuser length, $£_{D} / L$, and diffuser angle β. The lateral nozzle placement, y_{j} / H and the nozzle tilt, α are additional parameters for the dual-jet ejector. Each of these parameters is varied independently while all others are held fixed at their nominal values, $x_{j} / 2 H=0, L / 2 H=3.25, \gamma=0, L_{D} / L=0$, and $\beta=0$ for the single-jet ejector, and $x_{j} / 2 H=0.44, y_{j} / H=0.5, \alpha=0, L / 2 H=3.25, \gamma=0$, $L_{D} / L=0$, and $\beta=0$ for the dual-jet configuration. For the single-jet case, the basic configuration is the same as the JPL test with the exception that the nozzle is located at the entrance plane of the ejector as opposed to one channel width in front. The nominal dual-jet configuration is the same as the single-jet one with the primary jet divided in two symmetrically placed jets of half the single jet intensity.

7.2.2 Ejector Length

Figure 7.5 shows the variation in the thrust augmentation ratio with ejector length for the single-jet and dual-jet configurations. The computations show that the ejector performance increases monotonically with the ejector length. This result can be explained as follows. As the ejector becomes longer, the high energy jet fluid

Figure 7.4: Variation of ejector geometrical parameters

Figure 7.5: Effects of the ejector length. (A) Computed results for single-jet: $x_{j} / 2 H=0, \gamma=0, L_{D} / L=0, \beta=0$, dual-jet: $x_{j} / 2 H=0.44, y_{j} / H=0.5$, $\alpha=0, \gamma=0, L_{D} / L=0, \beta=0$. (B) Qualitative comparison with experiment for a single-jet configuration (taken from Ref. [1]).
has more opportunity to mix with the ambient fluid. The enhanced mixing requires an increase in the amount of entrained secondary flow and hence an increase in performance.

The experimental results shown in part (B) of Figure 7.5 are for a single-jet configuration. The experimental data shows a similar trend with the exception that the thrust augmentation ratio does not increase monotonically with the ejector length. The experimental data show an increase in performance up to a maximum value at roughly $L / 2 H \simeq 7$, after which the performance continually degrades. The differences between the computed and experimental results arises from the neglect of skin friction in the computation. In the experiment, the increment in drag due to skin friction starts to overcome the increment in performance due to increasing the ejector length at $L / 2 H \simeq 7$. Without account for the viscous drag, the computed results are unable to show the optimal ejector length.

A very simple analysis can be made to better understand the differences in performance of the single and dual-jet ejectors. The premise of this analysis is that the dual-jet ejector has a greater effective length than does the single jet configuration. The basic idea is shown in Figure 7.6. By virtue of symmetry at the ejector channel centerline, each jet in the dual-jet configuration acts as a separate ejector. The length to width ratio of the two effective ejectors, however, is not the same as the original $L / 2 H$. The overall ejector length L is the same, but the effective channel width is reduced. If the nozzle is located midway between the ejector centerline and the ejector wall, then the effective channel width is $H / 2$. In general, the effective channel width depends on the lateral position of the primary nozzle. For an arbitrary lateral nozzle position, the following hypothesis for the effective channel width is used

$$
H_{e f f}= \begin{cases}\left(1-\frac{Y_{j}}{H}\right) H & \frac{Y_{j}}{H}<\frac{1}{2} \tag{7.3}\\ \left(\frac{Y_{j}}{H}\right) H & \frac{Y_{j}}{H}>\frac{1}{2}\end{cases}
$$

The effective ejector length to width ratio is then

$$
\begin{equation*}
\left(\frac{L}{2 H}\right)_{e f f}=\frac{H}{H_{e f f}}\left(\frac{L}{2 H}\right) \tag{7.4}
\end{equation*}
$$

Figure 7.6: Effective ejector length for the dual-jet configuration
The thrust augmentation of the dual-jet ejector may then be related to the thrust augmentation ratio of an effective single-jet ejector as follows

$$
\phi_{d u a l-j e t}\left(\frac{L}{2 H}, \frac{Y_{j}}{H}\right) \simeq \begin{cases}\phi_{\text {single }-j e t}\left(\frac{1}{1-\frac{Y}{H}}\left(\frac{L}{2 H}\right)\right) & \frac{Y_{2}}{H}<\frac{1}{2} \tag{7.5}\\ \phi_{\text {single }-j e t}\left(\frac{1}{\frac{Y_{j}}{H}}\left(\frac{L}{2 H}\right)\right) & \frac{Y_{j}}{H}>\frac{1}{2}\end{cases}
$$

For the symmetrical placement $Y_{j} / H=0.5$, the above relation becomes

$$
\begin{equation*}
\phi_{\text {dual- jet }}\left(\frac{L}{2 H}, 0.5\right) \simeq \phi_{\text {single-jet }}\left(2\left(\frac{L}{2 H}\right)\right) \tag{7.6}
\end{equation*}
$$

Thus the performance of a dual-jet ejector with the nozzles symmetrically placed is predicted to perform the same as a single-jet ejector of twice the length. The validity of this estimate is demonstrated in Figure 7.7 where the results of the single-jet computation are used to provide an estimate of the dual-jet performance. The estimate agrees well with the actual dual-jet computation over the entire range of ejector lengths. An estimate for the variation in performance with the lateral position of the nozzles in the dual-jet ejector can also be made. Figure 7.8 shows a

Figure 7.7: Comparison of the computed results for the dual-jet ejector with an estimate based on the effective single-jet ejector concept

Figure 7.8: An estimate of the effect of the lateral position of the primary nozzles
plot of Eq. (7.5) where the results for the single-jet computation have been used. The analysis shows that the optimal location for the nozzles is midway between the ejector channel centerline and the channel wall.

7.2.3 Longitudinal Nozzle Position

Shown in Figure 7.9 is the effect of the longitudinal nozzle placement for both the single-jet and dual-jet ejectors. The computed results for the single-jet ejector show that the performance is maximized when the nozzle is located at the ejector inlet plane. This fact may be explained as follows. When the nozzle is located ahead of the ejector, much of the entrainment takes place ahead of the ejector as well. The jet is already partially mixed as in enters the ejector shroud and as a result has less available kinetic energy to be used to entrain additional ambient fluid. The momentum flux of the secondary fluid entering the ejector is consequently reduced and the performance is degraded. As the nozzle is moved away from the entrance plane into the channel, the length over which the turbulent mixing can take place is reduced. A reduction in mixing again implies a reduction in the entrainment of ambient fluid and a corresponding drop in performance. According to this argument, the optimal nozzle location should be at the ejector entrance plane since at this location the jet has the greatest available kinetic energy as well as the longest distance within the channel for the mixing to take place.

In part (B) of Figure 7.9, a qualitative comparison with experimental data for a single-jet ejector is made. The experimental results show the same trend where the performance is maximized near the ejector entrance plane. The experiment shows a more rapid decrease in performance as the nozzle is moved in front of the ejector. This discrepancy is probably due to differences in the basic geometry of the experimental and computational configurations.

The computed results for the dual-jet ejector are similar to the single jet case with the exception that the maximum performance is obtained when the jets are located slightly inside the ejector channel. The fact that the optimal position is not at the entrance plane for the dual-jet ejector is related to the curvature of the

Figure 7.9: Effects of the longitudinal nozzle position. (A) Computed results for single-jet: $L / 2 H=3.25, \gamma=0, L_{D} / L=0, \beta=0$, dual-jet: $L / 2 H=3.25$, $y_{j} / H=0.5, \alpha=0, \gamma=0, L_{D} / L=0, \beta=0$. (B) Qualitative comparison with experiment for the single-jet case (taken from Ref. [1]).
jet centerlines. Due to the non-uniform pressure in the inviscid field at the ejector inlet, the jets are induced to follow curved trajectories. The relative position of the jet centers are therefore displaced from their optimal position midway between the ejector centerline and the ejector wall. As the nozzles are moved further inside the channel, they are located in a region of increasing uniformity in the pressure field. Consequently the displacement of the jet centerlines diminishes and the performance is increased. The optimal position for the nozzles is the point where the rate of increase in performance due to a less deflected jet trajectory is equal to the rate of decrease in performance due to a decrease in the overall length over which the flow has to mix.

7.2.4 Lateral Nozzle Position for the Dual-Jet Ejector

Figure 7.10 shows how the lateral nozzle position affects the performance for the dual-jet ejector. The results show that the performance is maximized when the jets are located midway between the ejector walls and the channel centerline. The performance drops off a bit faster when the jets are moved towards the ejector channel walls than when they are moved towards the channel centerline.

A comparison of the the computed results with the estimate provided by the effective ejector length concept is shown in part (B) of figure 7.10. The qualitative agreement shows that moving the nozzle from its optimal location at the midpoint between the channel centerline and the channel wall results in a shortening of the effective ejector length.

7.2.5 Nozzle Tilt for the Dual-Jet Ejector

Shown in Figure 7.11 is the variation in performance of the dual-jet ejector with the primary nozzle tilt. The computation shows that, for the chosen position of the primary nozzle, the performance is maximized for a nozzle tilt of zero degrees. The nozzle tilt affects the performance in much the same way as does the nozzle lateral nozzle position since tilting the nozzle forces the jet centers to leave their optimal point midway between the ejector channel centerline and the ejector wall.

Figure 7.10: Effects of the lateral nozzle position for the dual-jet ejector. (A) Computation for $x_{j} / 2 H=0.44, \alpha=0, L / 2 H=3.25, \gamma=0, L_{D} / L=0, \beta=0$. (B) Comparison with the estimate based on the effective ejector concept.

Figure 7.11: Effects of the nozzle tilt for the dual-jet ejector. $x_{j} / 2 H=0.44$, $y_{j} / H=0.5, L / 2 H=3.25, \gamma=0, L_{D} / L=0, \beta=0$.

7.2.6 Free Stream Speed

Figure 7.12 shows the computed variation in the thrust augmentation ratio with the free stream speed for the single-jet and dual-jet ejectors. The parameter γ is a non-dimensional measure of the free stream speed. Its square is proportional to the force created by the dynamic pressure of the free stream acting over the channel width, divided by the primary jet thrust.

$$
\begin{equation*}
\gamma^{2}=\frac{\rho U_{\infty}^{2} H}{T_{0}} \tag{7.7}
\end{equation*}
$$

The computed results show a steady decrease in performance with increasing free stream intensity. The results for the single-jet and dual-jet ejectors show a similar trend, with the dual-jet ejector out-performing the single-jet ejector throughout the entire range of γ. The reason for the decrease in performance with increasing free stream speed is due to an increase in the ram drag. The experimental data for a single-jet configuration shown in part (B) of Figure 7.12 illustrates a similar trend. The results of the control volume analysis, shown in part (C) of Figure 7.12 again agree qualitatively with the results of the viscous-inviscid calculation. In comparing the viscous-inviscid results with the control volume analysis, it is evident that the dual-jet ejector achieves a higher degree of mixing (smaller exit velocity skewness factor, λ_{2}) than does the single-jet ejector. The higher degree of mixing enables the dual-jet ejector to maintain its advantage over the single-jet configuration as the free stream intensity is increased.

7.2.7 Diffuser Length

The computed variation in thrust augmentation ratio with diffuser length for a constant diffuser angle of 20° is shown in Figure 7.13. The computation shows that the thrust augmentation ratio is a non-monotonic function of the diffuser length when the diffuser angle is held fixed. For the single-jet case, the performance is maximized at about $L_{D} / L=0.3$. The computation for the dual-jet ejector shows increasing performance over the entire range of diffuser lengths investigated. The

$$
\gamma^{2}=\frac{\rho u_{\infty}^{2} H}{T_{0}}
$$

Figure 7.12: Effects of the free stream speed. (A) Computed results for single jet: $x_{j} / 2 H=0, L / 2 H=3.25, L_{D} / L=0, \beta=0$, dual-jet: $x_{j} / 2 H=0.44, y_{j} / H=0.5$ $\alpha=0, L / 2 H=3.25, L_{D} / L=0, \beta=0$. (B) Qualitative comparison with experiment for a single-jet configuration (taken from Ref. [1]). (C) Comparison with the control volume analysis.

Figure 7.13: Effects of the diffuser length. Computed results for single-jet: $x_{j} / 2 H=0, L / 2 H=3.25, \gamma=0, \beta=20^{\circ}$, dual-jet: $x_{j} / 2 H=0.44, y_{j} / H=0.5$, $\alpha=0, L / 2 H=3.25, \gamma=0, \beta=20^{\circ}$
dual-jet performance should go through a maximum, however, but apparently at a value of L_{D} / L greater than 0.45 .

A physical explanation of the effect of a diffuser is easier to understand if the results of Figure 7.13 are replotted as the thrust augmentation ratio versus the diffuser area ratio. Such a plot is shown in Figure 7.14. The results look much the same in this plot since the diffuser area ratio is directly proportional to the diffuser length if the diffuser angle is held fixed.

Recall that the ejector exit pressure must equal the atmospheric value. Then, if the turbulent mixing within the diffuser is neglected, the diffuser area ratio alone sets the pressure at the entrance of the diffuser to a value less than atmospheric. The lowered pressure within the ejector induces additional secondary flow to enter the device and hence an increase in performance. At the same time, however, the lowered pressure acting over the sloped diffuser walls creates a drag force. The drag force increases faster than does the increment in performance due to the the enhanced secondary flow. As the diffuser area ratio is increased, the pressure drag soon dominates and the thrust augmentation ratio falls from its maximum value.

The boundary layers within the diffuser are neglected in the viscous-inviscid algorithm and thus it is not possible to detect the decrease in performance associated with boundary layer separation from the diffuser walls when high area ratios are used. Thus the computed decrease in performance following the maximum value of thrust augmentation is due to increasing pressure drag and not diffuser stall. In interpreting the experimental data for the single-jet configuration shown for comparison in part (B) of Figure 7.14, it is difficult to determine whether the decrease in performance after the maximum value is due to boundary layer separation or from increasing pressure drag.

Part (C) of Figure 7.14 shows the corresponding result of the control volume analysis for comparison with the viscous-inviscid computation. The trends are seen to be quite similar.

In comparing the control volume results with the viscous-inviscid computation, it is again evident that the dual-jet ejector achieves a higher degree of mixing (lower exit velocity skewness, λ_{2}) than does the single-jet ejector. Because of its ability

(B) THRUST AUGMENTATION RATIO. φ

Figure 7.14: Effects of the diffuser area ratio (a replotting of Figure 7.13). (A) computed results for single jet: $x_{j} / 2 H=0, L / 2 H=3.25, \gamma=0, \beta=20^{\circ}$, dual jet: $x_{j} / 2 H=0.44, y_{j} / H=0.5, \alpha=0, L / 2 H=3.25, \gamma=0, \beta=20^{\circ}$. (B) Qualitative comparison with experiment for a single-jet configuration (taken from Ref. [1]). (C) Comparison with the control volume analysis.
to more efficiently mix the primary and secondary streams, the dual-jet ejector is predicted to perform significantly better than the single-jet counterpart when a diffuser is used. The advantage of the dual-jet ejector is most evident for greater diffuser area ratios.

7.2.8 Diffuser Angle

The variation in thrust augmentation ratio with diffuser angle for constant diffuser length is shown in Figure 7.15. The computed results look much the same as those for varying the diffuser length while holding the angle fixed (c.f. Figure 7.13). The similarity between the two sets of results suggests that the thrust augmentation ratio is predominantly a function of the diffuser area ratio and not the details of the diffuser shape. This hypothesis is tested by performing a computation where the diffuser length and diffuser angle are varied simultaneously in such a way that the diffuser area ratio remains fixed. The results of this computation are show in Figure 7.16. The flatness of the computed results indicates that the overall performance is nearly independent of the details of the diffuser shape. The code predicts only a slight advantage in using a short diffuser with a large angle. The fact that the thrust augmentation ratio is essentially independent of the diffuser shape indicates that there is a negligible amount of turbulent mixing taking place in the diffuser.

7.3 Optimization Studies

In an effort to demonstrate the usefulness of the viscous-inviscid algorithm for practical design problems, a few example optimization studies have been performed. In these studies, the viscous-inviscid computer code is used as a subroutine in an optimization package. Due to the efficient nature of the viscous-inviscid algorithm, configurations are optimized in manageable amounts of time on a VAX 11/780 machine.

Figure 7.15: Effects of the diffuser angle for constant diffuser length. Computed results for single-jet: $x_{j} / 2 H=0, L / 2 H=3.25, \gamma=0, L_{D} / L=0.31$, dual-jet: $x_{j} / 2 H=0.44, y_{j} / H=0.5, \alpha=0, L / 2 H=3.25, \gamma=0, L_{D} / L=0.31$.

Figure 7.16: Effects of the diffuser length for constant diffuser area ratio. Computation for single-jet: $x_{j} / 2 H=0, L / 2 H=3.25, \gamma=0, W / H=1.73$, dual-jet: $x_{j} / 2 H=0.33, y_{j} / H=0.5, \alpha=0, L / 2 H=3.25, \gamma=0, W / H=1.73$.

Figure 7.17: Configuration for the ejector inlet optimization. $x_{j}, x_{L}, \theta, U_{\infty}$, and the dynamic viscosity, μ are variable. Fixed parameters are: $L / 2 H=3.25, d / 2 H=0.5$.

7.3.1 Single-Jet Ejector Optimization

The computer code for the single-jet ejector is used to optimize a thrust augmentor inlet for several different flight conditions. The basic configuration is again the geometry used in the JPL test. Figure 7.17 shows the variable-geometry inlet to be used in the optimization study. The primary jet is free to move fore and aft of the ejector entrance plane. A variable-length section of the inlet is also free to rotate towards and away from the ejector centerline. In non-dimensional form the design variables are: nozzle position $-x_{j} / 2 H$, inlet lip length $-x_{L} / 2 H$, inlet lip rotation angle $-\theta$, free stream speed - $\gamma^{2}=\rho U_{\infty}^{2} H / T_{0}$, and Reynolds number $R_{e}=\sqrt{2 H \rho T_{0}} / \mu$. The Reynolds number becomes an important parameter in the optimization study because a boundary layer calculation is included for the inlet portion of the ejector. Inlet geometries that result in boundary layer separation are
rejected in the optimization process.
A quasi-Newton optimization package[65] is coupled with the viscous-inviscid code to systematically search through the design parameters. Constraints imposed by geometrical restrictions as well as boundary layer separation are incorporated into the optimization scheme through the use of algebraic penalty functions. The penalty functions artificially lower the performance once a constraint is violated.

The free stream speed parameter, γ and the Reynolds number R_{e} are chosen to define the flight condition. The optimization package then repeatedly evaluates the viscous-inviscid code to determine the optimal values of the remaining parameters. A concise statement of the optimization problem is

$$
\begin{equation*}
\text { MAXIMIZE } \phi=\phi\left(\frac{x_{j}}{2 H}, \frac{x_{L}}{2 H}, \theta\right) \tag{7.8}
\end{equation*}
$$

subject to the geometrical and boundary layer separation constraints.

Penalty Function Transformation

In its present form, the problem here is one of constrained optimization. Problems of constrained optimization are much more difficult to treat than are those of unconstrained optimization. Accordingly, a penalty function transformation[66] is used to transform the constrained optimization problem into one of unconstrained optimization. The idea behind the penalty functions is simple. The constraints are completely ignored until one of them is violated. When a constraint is violated, the performance is artificially lowered in an effort to redirect the search away from the forbidden region. The penalty functions thus simulate the effects of the constraints while allowing the problem to be treated under an unconstrained optimization framework.

With the use of penalty functions, the objective is to maximize the following

$$
\begin{equation*}
\text { MAXIMIZE } g=\phi-\sum_{i=1}^{N} c_{i} \delta_{i}^{2} \tag{7.9}
\end{equation*}
$$

where the c_{i} are weighting factors and the δ_{i} are the penalty functions. The penalty
functions themselves are composed of Heavyside functions. For example, a constraint of $\theta<\theta_{0}$ is modeled as

$$
\begin{equation*}
\delta=\left(\theta-\theta_{0}\right) \mathcal{H}\left(\theta-\theta_{0}\right) \tag{7.10}
\end{equation*}
$$

where \mathcal{H} is the Heavyside function. Note that the penalty is zero until $\theta=\theta_{0}$.
The weighting coefficients c_{i} are a measure of the relative importance of enforcing each constraint. Low values of c_{i} imply little attention paid to the constraints, while larger values increase their importance. The magnitude of the weights have a profound effect on the convergence of the optimization process. In general the convergence degrades with increasing values of the weights. The best strategy for obtaining convergence is to let the weights vary during the optimization process such that their magnitude is steadily increased as the optimal point is neared.

Optimal Solutions

Optimal configurations are determined for a wide range of Reynolds number for three values of the dimensionless free stream velocity, γ. Figure 7.18 shows the variation in the performance of a thrust augmentor with an optimized inlet as a function of both Reynolds number and free stream speed. The results indicate that the performance is an increasing function of Reynolds number, with strongest dependence in the low Reynolds number range. The rapid increase in performance at low Reynolds numbers is associated with transition from a laminar to a turbulent boundary layer. A laminar boundary layer can not withstand the severe adverse pressure gradient which is present in the inlet region. In an effort to avoid inlet stall, the optimization routine seeks a configuration that reduces the pressure rise in the inlet region by decreasing the degree of turbulent mixing within the shroud. In so doing, the performance is decreased since the mechanism of thrust augmentation relies on mixing of the high momentum jet with the ambient fluid. As the Reynolds number is increased to a value sufficient to induce transition to a turbulent boundary layer, the performance is greatly enhanced due to the fact that the turbulent boundary layer is able to negotiate the intensified pressure rise associated with increased mixing within the shroud.

Figure 7.18: Performance of the thrust augmentor with an optimized inlet

When a non-zero free stream speed is included, the presence of a strong favorable pressure gradient following the stagnation point at the shroud nose helps to energize the boundary layer, thus making it more resilient to separation as the pressure rise in the inlet region is encountered. In contrast, for the case of static operation, the boundary layer begins at the tail end of the shroud, and due to its lengthy evolution and less favorable pressure gradient, becomes thick and sluggish by the time it has traveled the distance necessary to be swept into the inlet. The resulting thick, weak boundary layer experiences separation at a smaller pressure rise compared to the more favorably energized boundary layer. For this reason, increased levels of performance are noted in the laminar regime when a free stream velocity is present.

In the high Reynolds number regime, performance decreases with increasing free stream speed. This is due to an increase in the ram drag.

A few representative optimal shapes corresponding to the performance curves in Figure 7.18 are shown in Figures 7.19 and 7.20. The results show that the optimal design shapes are a much stronger function of Reynolds number than free stream speed. At low Reynolds number, Figure 7.19 shows that the optimal nozzle position is located up to one channel width aheid of the shroud, while the inlet is slightly expanded. This combination serves to n. nimize the adverse pressure gradient in the inlet region as required by the laminar bcundary layer which develops there. In Figure 7.20 as the Reynolds number is increased and the boundary layers undergo transition, the nozzle moves approximately to the entrance plane of the shroud. The inlet lips rotate through the horizontal and then towards the jet as the Reynolds number is increased. The length of the inlet lip which is rotated is seen to increase with Reynolds number.

More detail on the behavior of the various design parameters as the Reynolds number and dimensionless free stream speed are varied is shown in the following sequence of plots. Figure 7.21 illustrates the optimal lip rotation angle as a function of Reynolds number for three values of the dimensionless free stream speed. It can be seen that the optimal lip rotation angles follow a similar trend for all three values of dimensionless free stream velocity. As the Reynolds number is increased, and laminar boundary layers undergo transition to turbulence, the lips rotate quickly

Figure 7.19: Optimal configurations at low and moderate Reynolds numbers

Figure 7.20: Optimal configurations at high Reynolds numbers

Figure 7.21: Optimal lip rotation angle as a function of Reynolds number

Figure 7.22: Optimal primary nozzle position as a function of Reynolds number
from large positive angles to a position of roughly zero angle. Further increase in the Reynolds number causes a continual gradual decline in the lip rotation angle. Differences in the optimal lip rotation angle due the free stream speed become increasingly small in the high Reynolds number regime.

Displayed in Figure 7.22 is the optimal primary nozzle location as a function of Reynolds number for the three values of the dimensionless free stream speed. The trends are qualitatively similar for each of the three values. In the low Reynolds number limit, the nozzle is located well in front of the shroud due to the fragile nature of the laminar boundary layers. As the Reynolds number is increased and the boundary layers become turbulent, the optimal nozzle position moves quickly to a limiting point just inside the shroud. In light of the forward stagnation point

Figure 7.23: Optimal inlet lip length as a function of Reynolds number
induced by the free stream and its positive effect on the boundary layer development, the optimal nozzle location moves forward more quickly when a free stream is present as compared to static operation.

Figure 7.23 illustrates the optimal length of the inlet lip plotted as a function of Reynolds number for different values of the dimensionless free stream velocity. The general trend of a short lip at low Reynolds number, maximum lip length at moderate Reynolds number and a decine in lip length with very large Reynolds number is seen to hold for all three values of the dimensionless free stream velocity. Again due to the presence of a forward stagnation point, there is a shift in Reynolds number when the results for static operation are compared with those for a nonzero free stream. The rapid change in the lip length when moving out of the low Reynolds number regime is due to boundary layer transition.

Figure 7.24: Dual-jet ejector optimization.

7.3.2 Dual-jet Ejector Optimization

The dual-jet ejector code has been used to optimize the nozzle location and tilt for the same configuration used in the parametric studies. Figure 7.24 shows the basic configuration. The optimization is performed in the following way. With the nozzle tilt fixed, the performance is computed for several different nozzle positions within the solid rectangular box shown in Figure 7.24. The resulting data is used to construct contour plots that show lines of constant thrust augmentation. The optimal nozzle position is then found simply through inspection of the contour maps. The results of the optimization study are shown in Figures 7.25-7.28. Three contour plots are shown in each of the figures, corresponding to nozzle tilts of $-5^{\circ}, 0^{0}$, and 5^{0}. In order to give a sense of scale, the portion of the ejector shroud contained within the dashed box in Figure 7.24 is included with the results.

Figure 7.25 shows the results for the basic ejector configuration. The most

Figure 7.25: Lines of constant thrust augmentation for the unperturbed ejector. $L / 2 H=3.25, \gamma=0, \beta=0$.

Figure 7.26: Lines of constant thrust augmentation for a shortened ejector. $L / 2 H=2.25, \gamma=0, \beta=0$.

Figure 7.27: Lines of constant thrust augmentation for a moderate free stream speed. $L / 2 H=3.25, \gamma=0.5, \beta=0$.

Figure 7.28: Lines of constant thrust augmentation for a moderate diffuser area ratio. $L / 2 H=3.25, \gamma=0, L_{D} / L=0.7, \beta=20$
obvious feature of these results is that the performance is much more sensitive to the lateral position of the nozzles than it is to the longitudinal position. The results also indicate that the optimal lateral position of the nozzles is a function of both the longitudinal position and the nozzle tilt. For each of the three tilt angles, the optimal nozzle position has a different location. As the nozzles are rotated towards each other, the optimal nozzle location moves out towards the ejector inlet and up towards the channel wall. There is little variation in the maximum thrust augmentation ratio achieved in these three cases.

Figure 7.26 shows a similar set of results for a shorter ejector ($L / 2 H=2.25$). The largest difference between these results and those for a longer ejector is that the performance has become more equally sensitive to the lateral and longitudinal nozzle positions. This is primarily due to the fact that the length over which the flow has to mix has a stronger impact on performance when the latter is small (c.f. Figure 7.5). The absolute values of the thrust augmentation have also dropped in response to shortening the ejector.

Displayed in Figure 7.27 are performance contours for the basic ejector when a free stream is present. With the exception of an overall drop in performance, the results differ little from the static case shown in Figure 7.25.

Figure 7.28 shows lines of constant thrust augmentation for an ejector with a diffuser. The results show that the presence of the diffuser enhances the sensitivity of the nozzle location. This is primarily due to the fact that the effectiveness of the diffuser is a strong function of the degree of mixing achieved prior to the diffuser (c.f. Figure 2.3). Figure 7.29 shows a qualitative comparison of the computed results with experimental data[67] for the effect of nozzle position on the performance of a dual jet ejector. The experiment shows the same trend of the lateral position of the nozzle having a greater impact on performance than does the longitudinal position. The relative position of the optimal location is also similar. The absolute values of the thrust augmentation found in the experiment are higher than the computed values because a high area ratio diffuser was attached to the experimental configuration.

Figure 7.29: Qualitative comparison with experiment for the Dual-jet ejector nozzle position. Computation: $L / 2 H=3.25, \gamma=0, \alpha=0, \beta=0$. Experiment: $L / 2 H=2.25, \gamma=0, \alpha=-30^{\circ}, \beta=45^{\circ}$.

Chapter 8

Conclusions and Recommendations

8.1 Summary

A viscous-inviscid methodology has been developed as an accurate and efficient means of evaluating the performance of thrust augmenting ejectors. The inviscid portion of the flow field is modeled with a higher order panel method, while an integral method is used to solve for the viscous jet flow. The two solutions are iteratively matched together in a process that allows each region to influence the other en route to a converged solution.

Two separate algorithms are developed; one is capable of treating ejectors with a single primary jet while the other is designed to treat configurations that use two primary jets. The results of the single-jet model compare well with experimental data. Lack of detailed experimental data for a dual-jet configuration prohibits a critical comparison to be made for this case.

Both the single and dual-jet algorithms are used in a parametric study where the influence of nozzle placement, ejector length, free stream speed, and a diffuser are investigated. The results of this study are in good qualitative agreement with the available experimental data.

The efficiency of the algorithms are demonstrated through two optimization
problems. For the single-jet ejector, the nozzle position and the inlet shape are optimized for various flight speeds and Reynolds numbers. The dual-jet ejector algorithm is used to optimize the lateral and longitudinal nozzle position for different nozzle tilt angles.

8.2 Conclusions of the Numerical Method

Viscous-inviscid algorithms have been successfully developed to model single-jet and dual-jet ejector flow fields. The main conclusions that have been arrived at in connection with the use of this numerical technique are as follows:

1. The viscous-inviscid technique yields accurate solutions. Predictions of the model agree well with experimental data.
2. The viscous-inviscid technique is efficient. The computing time required for a solution is roughly 1.5 and 3 minutes of CPU time for the single-jet and dual-jet algorithms respectively on a VAX 11/780 machine.
3. The viscous-inviscid technique is robust in its ability to model arbitrary symmetric ejector configurations. This fact is demonstrated in the parametric studies.
4. The viscous-inviscid technique is well suited as for thrust augmentor optimization work.

8.3 Conclusions of the Parametric Studies

The parametric studies predict how the thrust augmentor performance is affected by the details of the ejector shape. The main conclusions of the parametric studies are as follows:

1. In all cases the dual-jet ejector performs better than the single-jet counterpart. The dual-jet ejector improvement is substantial; thrust augmentation ratio
increases of 20% to 50% can be realized by replacing a single primary jet with two primary nozzles.
2. The performance is maximized when the primary nozzle is located at the entrance plane of the ejector for the single-jet configuration. For the dual-jet ejector the performance is maximized when the jet nozzles are placed slightly inside of the ejector.
3. For the dual-jet ejector, the performance is maximized when the jet trajectories are such that the jet centerlines remain equi-spaced between the ejector symmetry plane and the ejector wall.
4. The thrust augmentation ratio increases with increasing ejector length. For short ejectors, the performance of the dual-jet ejector increases more rapidly with length than does the single-jet configuration.
5. Thrust augmentor performance degrades rapidly with increasing free stream speed.
6. The inclusion of a diffuser improves the ejector performance. The dual-jet ejector benefits more greatly from a diffuser than does the single-jet configuration.
7. In the absence of separation, the details of the shape of the diffuser are relatively unimportant. The thrust augmentation ratio is primarily a function of the diffuser area ratio alone.

8.4 Conclusions of the Optimization Studies

Optimization studies were performed to demonstrate the efficiency of the viscousinviscid algorithms. The main conclusions of these studies are:

1. Boundary layer separation is a controlling factor in the design of an ejector inlet.
2. An ejector needs a variable-geometry inlet to maintain optimal performance in all flight regimes.
3. Both the optimal longitudinal and lateral position of the primary nozzles in a dual-jet ejector are a function of the nozzle tilt angle.
4. As the nozzles are tilted towards each other, the optimal nozzle position moves towards the ejector wall and out towards the ejector inlet.

8.5 Recommendations

The work presented here should be considered as the first step in creating a general, efficient procedure for modeling the ejector mixing problem. There are several extensions of this work that are necessary to achieve the ultimate goal. These are:

1. Extend the analysis to account for the effects of compressibility. To do this, both a temperature profile and a thermal energy equation will need to be included in the integral formulation for the viscous region. For the inviscid region, a compressibility correction to the panel method (such as the PrandtlGlauert correction) could be used if the secondary flow is purely subsonic. If a supersonic secondary flow is to be modeled, a finite difference solution to either the full potential equation or the Euler equations will be necessary.
2. Remove the point source of momentum approximation for the primary jet and replace it with a more realistic finite-width model. This step will allow the effect of the nozzle width to be determined and should make the overall results more accurate by taking into account the jet potential core region.
3. Investigate the use of more sophisticated turbulence models. The algebraic eddy-viscosity expression used here appears to be adequate, but is limited in its rough approximation of the turbulent transport process. Other approaches, such as the $k-\epsilon$ model, are based on a more realistic picture of turbulence. Use of a model of this type should improve the reliability of the results.
4. Extend the analysis to three or more primary jets. When this step is undertaken, it should be done in conjunction with a finite-width jet nozzle model. It is necessary to use a finite nozzle model to properly account for the secondary flow blockage that results from placing additional nozzles within the ejector inlet.
5. Ultimately, the model should be extended to three-dimensional flows. A threedimensional analysis would be a valuable aid in the design of compact ejectors of low aspect ratio.

Appendix A

Compressibility of the Secondary

Flow

In this appendix, some of the limitations of the incompressible flow assumption are investigated. This investigation is necessary since most ejectors are designed to operate in the compressible flow regime. The analysis contained here illustrates that the thickness of the ejector shroud and the jet exit Mach number are important parameters in ascertaining the extent to which the secondary flow is incompressible.

The analysis is begun with the definition of the thrust augmentation ratio:

$$
\begin{align*}
\phi & =\frac{T_{0}+T_{i}}{T_{0}} \\
& =1+\frac{T_{i}}{T_{0}} \tag{A.1}
\end{align*}
$$

where T_{0} is the primary nozzle thrust and T_{i} is the thrust induced by the suction acting over the leading edges of the shroud (see Figure A.1). The induced thrust may be written as

$$
\begin{equation*}
T_{i}=2 \int_{0}^{d}\left(p_{a t m}-p\right) d y \tag{A.2}
\end{equation*}
$$

where the factor of 2 accounts for both leading edges of the ejector shroud. Let the average pressure acting over the leading edges be denoted as $\bar{p}_{l e}$. Then

$$
\begin{equation*}
\bar{p}_{l e}=\frac{1}{d} \int_{0}^{d} p d y \tag{A.3}
\end{equation*}
$$

Figure A.1: Ejector geometry and the principle of thrust augmentation.
The induced thrust may be written in terms of the average leading edge suction by combining Eqs. (A.2) and (A.3)

$$
\begin{equation*}
T_{i}=2\left(p_{a t m}-\bar{p}_{l e}\right) d \tag{A.4}
\end{equation*}
$$

This result is combined with the expression for the thrust augmentation ratio given in Eq. (A.1) to give

$$
\begin{align*}
\phi & =1+2 \frac{\left(p_{a t m}-\bar{p}_{l e}\right) d}{\rho_{e x} u_{e x}^{2} t} \\
& =1+2 \frac{p_{a t m}}{\rho_{e x} u_{e x}^{2}}\left(1-\frac{\bar{p}_{e e}}{p_{a t m}}\right)\left(\frac{d}{t}\right) \tag{A.5}
\end{align*}
$$

where the primary jet thrust has been rewritten in terms of the exiting momentum flux. Assume that the jet nozzle is designed to fully expand the primary flow to the atmospheric pressure. In this case, the definition of the sound speed, $c^{2}=\gamma p / \rho$, can be used in Eq. (A.5) to give

$$
\begin{equation*}
\phi=1+\frac{2}{\gamma}\left(\frac{c_{e x}}{u_{e x}}\right)^{2}\left(1-\frac{\bar{p}_{l e}}{p_{a t m}}\right)\left(\frac{d}{t}\right) \tag{A.6}
\end{equation*}
$$

or in terms of the Mach number

$$
\begin{equation*}
\phi=1+\frac{2}{\gamma M_{e x}^{2}}\left(1-\frac{\bar{p}_{l e}}{p_{a t m}}\right)\left(\frac{d}{t}\right) \tag{A.7}
\end{equation*}
$$

A. 1 Magnitude of the Leading Edge Suction

Equation (A.7) can be used to determine the magnitude of the average leading edge suction for given values of the thrust augmentation, exit Mach number, and nondimensional shroud thickness. To investigate the magnitude of the leading edge suction further, Eq. (A.7) is rewritten as

$$
\begin{equation*}
\frac{\bar{p}_{l e}}{p_{a t m}}=1-(\phi-1) \frac{\gamma M_{e x}^{2}}{2}\left(\frac{t}{d}\right) \tag{A.8}
\end{equation*}
$$

For the purpose of illustration assume that $\gamma=7 / 5$ and $\phi=2.0$. The above relation then becomes

$$
\begin{equation*}
\frac{\bar{p}_{l e}}{p_{a t m}}=1-\frac{7}{10} M_{e x}^{2}\left(\frac{t}{d}\right) \tag{A.9}
\end{equation*}
$$

Figure A. 2 shows the magnitude of the leading edge suction predicted by the above equation as a function of the jet exit Mach number, with the non-dimensional shroud thickness appearing as a parameter. The plot shows that for an extremely thin shroud $(d / t=1)$, the leading edge pressure drops rapidly with increasing exit Mach number. For this value of shroud thickness, the average leading edge pressure is one half the atmospheric value at $M_{e x}=0.85$, and is required to be vacuum at $M_{e x}=1.2$. As the shroud thickness is increased, the leading edge suction decreases so that the force developed on the ejector shroud is constant (i.e. constant thrust augmentation has been assumed). For moderate shroud thickness $(d / t=5.0)$, the leading edge pressure drops below one half atmosphere at $M_{e x}=1.9$ and is required to be vacuum at $M_{e x}=2.7$. For a thicker shroud $(d / t=10.0)$, the leading edge suction is moderate for low Mach numbers. The leading edge pressure falls to one half atmosphere at $M_{e x}=2.7$ and vacuum at $M_{e x}=3.8$.

Figure A.2: Magnitude of the shroud leading edge suction as a function of the jet exit Mach number. $\gamma=7 / 5$ and $\phi=2.0$.

A. 2 Conditions for Effectively Incompressible Flow

Another useful feature of this analysis is that it can be used to give the conditions under which an assumption of incompressible secondary flow is valid. This is done by solving Eq. (A.7) for d / t :

$$
\begin{equation*}
\frac{d}{t}=\frac{(\phi-1)}{\left(1-\frac{p_{t}}{p_{a t m}}\right)} \frac{\gamma M_{e x}^{2}}{2} \tag{A.10}
\end{equation*}
$$

For the purpose of illustration, assume that compressible effects become important in the secondary flow when the Mach number at the shroud leading edge is greater than 0.3 . The isentropic relation

$$
\begin{equation*}
\frac{p_{a t m}}{\bar{p}_{l e}}=\left[1+\left(\frac{\gamma-1}{2}\right) M_{l e}^{2}\right]^{\frac{\gamma}{\gamma-1}} \tag{A.11}
\end{equation*}
$$

indicates that $M_{l e}=0.3$ corresponds to a leading edge pressure of $\frac{\bar{p}_{l e}}{p_{a t m}}=0.9395$ (for $\gamma=7 / 5$). With this value of the leading edge pressure, together with $\gamma=7 / 5$ and $\phi=2.0$, Eq. (A.10) becomes

$$
\begin{equation*}
\frac{d}{t}=11.56 M_{e x}^{2} \tag{A.12}
\end{equation*}
$$

For a given jet exit Mach number, this equation gives the minimum shroud thickness required to ensure that the leading edge Mach number is less than 0.3 for $\gamma=$ $7 / 5$ and $\phi=2.0$. Figure A. 3 shows a plot of the boundary predicted by Eq. (A.12). The results show that the shroud thickness must increase with increasing jet exit Mach number in order to keep the leading edge Mach number within the effectively incompressible range. If the results of an ejector analysis that assumes incompressible secondary flow are to be used, then the combination of jet exit Mach number and non-dimensional shroud thickness must lie above the bounding curve in Figure A. 3.

A. 3 Conclusions

The results of this study indicate that the thickness of the ejector shroud is an important parameter in ejector design. In order to achieve a desired level of thrust

Figure A.3: Boundary for the incompressible flow assumption. $\gamma=7 / 5, \phi=2.0$.
augmentation at a given primary jet exit Mach number, the ejector shroud must be sufficiently thick so that the leading edge pressure is not required to be nonphysically small. In addition, if the results of an incompressible analysis are used in ejector design, the shroud must be sufficiently thick so that the secondary flow remains effectively incompressible for the given operating jet exit Mach number.

Appendix B

Computer Code

This appendix contains source listings for both the single-jet and dual-jet viscousinviscid algorithms. The various subroutines are grouped into four libraries: AUGLIB, TWINLIB, PAN2LIB, and MATHLIB. The AUGLIB library contains the subroutines for the single-jet viscous-inviscid matching procedure. The TWINLIB contains the subroutines for the dual-jet viscous-inviscid matching procedure. The PAN2LIB contains the subroutines needed to compute the higher-order panel method. Finally, the MATHLIB contains various mathematics procedures. In addition to these libraries, the IMSL library is used to supply several mathematics routines.

Both the single-jet and dual-jet codes have undergone revisions since the time that the results shown in this report were generated. Because of this, the code shown in this appendix may produce results that differ slightly from those contained within the results section.

B. 1 Single-Jet Program AUGMENT

AUGMENT is the driving program for the single-jet viscous-inviscid algorithm. Once compiled, it must be linked with the AUGLIB, PAN2LIB, MATHLIB, and IMSL libraries. Input data are to be read from file CASE.DAT.

PROGRAM AUGMEIT
c
C**
C
C PROGRAM LUGMEIT COMPUTES THE PERFORMAICE OF A TNO-DIMEISIOIAL SIIGLE-JET*
C IICOMPRESSIBLE FLOU EJECTOR. TBE CODE IS BASED OI A VISCOUS-IIVISCID IITER-* C ACTIOE ALGORITHM II WHICH THE IIVISCID REGION IS COMPUTED WITE A HIGBER C ORDER PAYEL METHOD ATD THE VISCOUS ZOEE IS COMPUTED WITH AI IITEGRAL METHOD.* C IHPUT DATA IS READ FROM FILE CASE.DAT. TEE ITERATIOI HISTORY AS WELL C as the thrust augreitatioi ratio prediction are urittel to file out.dat. C al exteided output optioy may be specified il tee IIput data file to cause C t日E JET SOLUTIOE AS WELL aS tBE details of the matchieg history to be C OUTPUT.
C THIS PROGRAM MUST BE LIIKED TO THE MATHLIB AID PAI2LIB LIBRARIES AS HELL* C AS THE IMSL MATH LIBRARY.
C THIS CODE IS OF EVOLUTIORARY ORIGIE AMD COISEQUEITLY MAY COMTAII REGIOMS* C POOR LOGIC STRUCTURE AID IMEFFICIEMT PROCEDURES. THERE HAS BEEE HO ATTEMPT * C Made to upgrade the code to a "production code" status.
C C

IMPLICIT REAL*8(A-H, 0-2)
PARAYETER (MAX=300)
DIMEYSIOI XBOD (MAX), YBOD (MAX), VI(MAX), XCP(MAX), YCP(MAX),
4 ALPHA (MAX) , D(MAX), ZETA (MAX), CX (3*MAX), CY(3*MAX),
$2 \quad \mathrm{PD}(\mathrm{MAX}), \mathrm{PE}(\mathrm{MAX}), \mathrm{PF}(\mathrm{MAX}), \mathrm{PG}(\mathrm{MAX}), \mathrm{PH}($ MAX $), \mathrm{PPI}(\mathrm{MAX})$, 2 C(MAX), IID1 (MAX), IMD2 (MAX), $A(M A X), B($ MAX $), ~ A M A T(M A X, M A X), ~$

- UJET(50), VJET(50),R(5),
- XS(250),VS(250),SC(100), UEXT(100)

LDGICAL DUSP1,STAG, DURP, SEP, BLAYER

OPEI(UIIT=1, MAME='BODY.DAT', TYPE='IEU', FORME'FORMATTED')
OPEI(UMIT $=2$, IAME $=$ ' PARAM.DAT', TYPE=' IEW', FORM=' FORMATTED')
OPEI (UIIT $=4$, IAME='CASE.DAT', TYPE ='OLD', FORH='FORMATTED')
OPEI(UIIT=21, IAYE='OUT. DAT', TYPE=' IEW', FORM=' FORMATTED')
*** URITE THE FREE STREAY VELOCITY aID AIGLE OF ATTACX TO FILE
*** Parah.dat. THE FREE STREAM VELOCITY UILL BE REDEFIMED LATER
*** IF IT IS TO BE IOIT-ZERO.
$V O=0.0 \mathrm{DO}$
BETA $=0.0 \mathrm{DO}$
URITE $(2,5)$ VO, BETA
FORMAT(2F10.5)
REWIID 2
*** OPEI DATA FILES. BODY.DAT UILL COITAII TEE COORDIIATES OF TEE ***
*** EJECTOR SHROUD. PARAY. DAT COITAIIS THE FREE STREAM VELOCITY AS ***
*** WELL AS THE AIGLE OF ATTACR. CASE.DAT COITAIMS THE IMPUT DATA. ***
*** OUT.DAT COETAIIS THE COIVERGEICE HISTORY AS UELL AS THE THRUST ***
*** AUGMESTATIOI RATIO.

```
TOL1 \(=5.0 \mathrm{D}-3\)
TOL2 \(=5.0 \mathrm{D}-3\)
\(B 0=1 . D-2\)
*** TOL1 IS THE COIVERGEECE TOLERAICE FOR THE VISCOUS-IIVISCID
*** MATCHIMG, TOL2 IS THE COIVERGEICE TOLERAICE FOR THE EXIT
***
***
*** PRESSURE MATCHIMG. BO IS THE JET IMITIAL HALF-WIDTH.
***
```

REWIID 2

C

1

CALL STRMTH(ALPHA,VI, HIIV, I, VO, BETL, Q)

UOO, PATM)

Call JETVEL(AJET, BJET, HJET,Q, I, vO, BETA, UJET, VJET,
*** RATCHIIG REGIOI.
CALL JET(MJS, IJF, XJET, YJET, UJET, VJET, HJET, U1O, BO,
VH, I, DUMP1, I, XEID, R, RES)
*** COMPUTE THE FREE STREAM VELOCITY.
CALL FRESTM (U1O, BO, UOO, GAMMA, VO)
*** CBECK FOR COIVERGE』CE II THE VISCOUS-IEVISCID MATCHIHG.
IF(I.GT.1.AYD.DABS(RES).LT.TOL1) GOTO 20
IF (I.EQ.IMAX) THEE
WRITE $(21,10)$
FORMAT(' VISCOUS-IIVISCID MATCHIIG DID HOT COEVERGE')
STOP
EID IF
END DO
cortidue
*** COMPUTE THE JET SOLUTIOI WITBII TEE FULLY VISCOUS REGIOF ***
CALL CHAFEL(R, XEXIT, XEID, YDIF, DIFSIP, DUMP1, PEXIT, DFDRAG)
*** UPDATE THE IHITIAL JET VELOCITY
ROLD=RR
RR=(PATH-PEXIT)
IF(J.EQ.1) THEI
$\mathrm{HW}=0.2$
ELSE
$W W=-(U 10-U 100 L D) /(R R-R O L D)$
EHD IF
U100LD=U10
$\mathrm{U} 10=\mathrm{U} 10+\mathrm{WH} * \mathrm{RR}$
*** URITE COMVERGEICE IRFORMATIOI.
URITE(21, 40) PATM, PEXIT, RR, U10
FORMAT(' PATM x ',F10.5,' PEXIT $=$, F10.5,
, $R=$, F10.5,' U10 $=$, F10.5)
** CAECK FOR COIVERGEICE II THE EXIT PRESSURE MATCHIIG.
IF(DABS (RR).LT.TOL2) GOTO 90
EMD DO
costidue

IF (BLAYER) THEI

 CALL SURFVEL (XEID, IEXIT, YCP, YCP, D, AHAT, BMAT, \(Q, I\),
 VO, BETL, SC, UEXT, IEXT, XLEI, STAG)
 *** CORPUTE TEE BOUIDARY LAYER.
DUMP=. FALSE .
-STEP $=20$
CALL AUGLYR(SC, UEXT, IEXT, RE, STAG, DURP, ISTEP, SEP , SCRIT)
*** URITE TEE RESULTS.
IF (SEP) THEM
URITE (21, 100)
FORMAT(/,' SEPARATED BOUMDARY LAYER', /)
ELSE
URITE $(21,110)$
FORMIT(/,' IO SEPARATIOI',/)
EDD IF
EID IF
*** COMPUTE THE DIFFUSER EXIT UIDTH.
EEXIT $=1$. ODO $+($ XEXIT - XDIF $) *$ DIFSLP
*** COMPUTE THE EJECTOR PERFORMAICE

CALL PERFRM(R,HEXIT, ALPHA, D, AMAT, BMAT, $Q, I, V O, B E T A$,
1 U1O, U 0 , BO, DFDRAG,IS, EF,PEI)

*** REURITE TEE EJECTOR BODY GEOMETRY FILE WITH THE CORRECT VALUE ***

**: OF THE PAEEL SUCTIOI VELOCITIES.

REWIID 1
DO $I=1, I+1$
WRITE(1,120) XBOD(I), YBOD(I), VI(I) FORMAT(3F10.5)
EID DO
C
C

C
*** DELETE FILE PARAM.DAT.
CLOSE(UIIT=2,STATUS='DELETE')
STOP
EDD

B.1.1 Sample Input

Below is a listing of sample input data contained in file CASE.DAT.

```
0.0000 X COORDIIATE OF THE JET IOZZLE
1.0000 X COORDIIATE OF THE SHROUD LIP
0.0000 ROTATIOI AIGLE OF TEE SEROUD LIP (II DEGREES)
6.5000 SHROUD LEIGTH
6.5000 I COORDIHATE OF THE DIFFUSER START
0.0000 DIFFUSER SLOPE
0.0000 FREE STREAM SPEED PARAMETER, GAMDA
15.0000 IHITIAL JET CEETERLIME VELOCITY
EXTEIDED OUTPUT OPTIOY (1 FOR EITRA OUTPUT, O FOR STAEDARD)
BOUYDARY LAYER CALCULATIOI COMTRDL (1 CALCULATES IT, O DOESIT)
1.00E5 THRUST BASED REYEOLDS IUABER
```


B.1.2 Sample Output

Below is the output written to file OUT.DAT

PATM $=$	0.79853 PEXIT $=$	$0.65228 \mathrm{R}=$	0.14625 U10	15.02925
PATM	0.79280 PEXIT	0.64757 R	0.14523 U10	19.15580
PATM	1.04161 PEXIT	1.20321 R	-0.16160 U10	16.98242
PATM	0.92311 PEXIT	0.90936 R	0.01375 U10	17.15281
PATM $=$	0.91671 PEXIT	$0.91357 \mathrm{R}=$	0.00314 U10	17.20317

SEPARATED BOUIDARY LAYER

JET MOMETTUK $=2.72349$ EXITIIG MOMEITUH $=3.91059$
I ${ }^{2}$ DUCED TERUST COMPUTED FROM SURFACE PRESSURES $=1.25313$
IHDUCED TERUST COMPUTED FROM MOMEITUN THEOREH $=1.18709$
PRESSURE DRAG ASSOCIATED HITH THE DIFFUSER $=0.00000$
TERUST AUGMEITATIOI RATIO FROK SURFACE PRESSURES = 1.46012
THRUST AUGMEITATIOI RATIO FROM MOMEITUH THEOREA $=1.43587$

B. 2 Dual-Jet Main Program DUOAUG

DUOAUG is the driving program for the dual-jet viscous-inviscid algorithm. Once compiled, it must be linked to the TWINLIB, PAN2LIB, MATHLIB, and IMSL libraries. Input data are to be read from file CASE.DAT.

C

```
*** READ II TBE IUPUT VALUES
CALL GETPRM(XJ, YJ ,Y1DOTO, XEIIT,D1,D2, GAMMA, U1O,BO,DUMP1)
DIFSLP=D1
XDIFF=D2
    *** URITE THE FREE STREAM VELOCITY AID THE AEGLE OF ATTACR TO A ***
    *** DATA FILE. TBE VALUE OF FREE STREAM SPEED WILL BE CHABGED * ***
    *** LATER IF REQUIRED.
OPEM(UIIT= 2,HAME='PARAM.DAT', TYPE='#EH', FORH='FORMATTED')
VO=O.ODO
BETA=0.0DO
URITE(2,8) VO,BETA
FGRMAT(2F10.5)
REWIDD 2
    *** URITE AI IHITIAL GUESS FOR THE JET TRAJECTORY TO FILE JETCL.DAT***
OPEI(UIIT=20,_AYE='JETCL.DAT', TYPE='\EN',FORM='FORMATTED')
XCL=\J
YCL=YJ
YRITE(20,8) XCL,YCL
YCL=12.0DO
YCL=YJ+Y1 DOT*(XCL-XJ)
URITE(20,8) YCL,YCL
REWIID 20
    *** IF TBE EXTEIDED OUTPUT OPTIOI IS CHOSEI, OPEE ADDITIOLAL OUTPUT***
    *** FILES. LURJET.DAT COITAIIS THE VELOCITIES AT THE LONER SIDE ***
    *** OF THE JET. UPPJET.DAT COITAIIS THE VELOCITIES AT THE UPPER ***
    *** SIDE OF TEE JET. MCHJET COMTAIIS THE JET SOLUTION OVER THE ***
    *** VISCOUS-IIVISCID MATCEIMG REGIOI. CH#JET COETAIIS TEE JET ***
    *** SOLUTIOY WITHIE THE FULLY VISCOUS REGIOI. ***
IF(DUMP1) THEM
    OPEH(UEIT= 9, IAME='LWRJET.DAT',TYPE='\EN', FORM='FORMATTED')
    OPET(UIIT=10, IAME='UPPJET. DAT',TYPE='EEW',FORH='FORMATTED')
    OPEY(UEIT=11, IAME='MCEJET. DAT',TYPE='IEW', FORM='FORMATTED')
```



```
END IF
contimue
```

 ** OPEI \(\triangle\) DATA FILE TO HOLD TEE EJECTOR SURFACE COORDIIATES ***
 OPEI(UEIT $=1$, IAME='BODY. DAT', TYPE='IEN', FORM=' FORMATTED')
*** GEIERATE THE EJECTOR SURFACE CODRDIMATES 1I THE IMITIAL GUESS ***
*** FOR THE PAIEL SUCTIOI VELOCITIES

CALL DUOBOD (XJ, YJ , DY1 DXO, Y1CS, IJLS, IJLF, IJUS, MJUF, IS , MF ,IER)
IF (IER.EQ.1) THEE
URITE $(3,101)$
FORMAT(' ERROR II DUOAUG: DUOBOD RETURIED UITH IER=1')
STOP
END IF
*** READ TEE EJECTOR SURFACE COORDIIATES ATD TEE PAIEL SUCTIOI ***
*** VELOCITIES IITO DATA ARRAYS.

```
C
C
C
C
C
C
C
CALL GETDAT(1, YBOD, YBOD ,VI, I, VO, BETA)
*** COMPUTE THE CORRECT VALUE OF THE FREE SIREAM SPEED.
CALL FSTRA(U1O, BO, 1.ODO, O. ODO, GAFRM, VO)
*** COMPUTE GEOMETRICAL PARAMETERS FOR THE PAEEL METHOD.
CALL GEOM(YBOD, YBOD , ZETA,CX,CY, WORK, I, YCP, YCP, ALPBA, D,
I\#D1, I\#D2, PD, PE, PF, PG, PE, PPI , C)
*** COMPUTE TRE IMFLUEICE COEFFICIEIT MATRX APD ITS IEVERSE
CALI IIFIIV (XCP, YCP, ALPEA, D,I\#D1, IID2, PD, PE, PF, PG, PE, PPI, C, YORK, IVEC, BVEC, H, I, AMAT, BMAT, HITV)
*** COMPUTE THE IIFLUEDCE VELOCITY COEFFICIEITS ALOHG THE JET ***
*** BOUTDARY.
CALL JETMAT (IJLS, IIJLF, HJUS, IJUF, YCP, YCP, ALPEA, D, IID1, IMD2, 1 PD, PE, PF, PG, PH, PPI, C, MORK, 1 VEC , BVEC, \(\triangle\) MAT, BHAT, I, LLWR, BLUR, AUPP, BUPP)
*** PREPARE FOR AI UPDATED JET TRAJECTORY
CLOSE (UHIT \(=20\), STATUS = DELETE')
OPEI(UIIT \(=20\), EAMEx'JETCL.DAT' , TYPE='MEU',FORY='FORMATTED')
*** EMTER 1 LOOP TO COHVERGE TEE EXIT PRESSURE
\(J M A X=10\)
DO \(\mathrm{J}=1\), JMAX
*** EETER \& LOOP TO PERFORM THE VISCOUS-IIVISCID HATCEIEG ***
IHAX=10
DO I=1, IMAX
*** COMPUTE THE PAIEL SOURCE STRELGTHS ***
CALL STRMTH(ALPHA, VI, WIIV, H, VO, BETA, Q)
*** COMPUTE TEE VELOCITIES ALOIG TEE JET BOUIDARY ***
CALL VLCJET (ALUR, BLUR, AUPP, BUPP, Q, IJLS, IJLF, IJUS, IJUF,
1
I, VO, BETA, PムTM)
*** COMPUTE TEE JET SOLUTIOI WITEII TEE MATCEIIG REGIOI
CALL OIEJET (IJJLS, IJLF, IJUS, IJUUF, YJ, Y1DOTO, U10, BO, VO,
1 LLPEA, VI, I, DUMP1, I , UOO , AO, YEID, Y1ETD, RES)
*** COMPUTE TEE CORRECT VALUE OF THE FREE STREAM VELOCITY ***
CALL FSTRM(U10,BO, UOO, \(10, G A M A L A, V O)\)
*** CBECK FOR COIVERGEICE IT TEE VISCOUS-IIVISCID MATCHIEG ***
IF(I.GT.1.AED.DABS (RES).LT.TOLI) GOTO 20
IF (I.EQ.IMAX) THEI
```

$\operatorname{URITE}(3,31)$
FORMAT(, ERROR II DUNAUG: PRESSURE MATCEIIG DID '

IER=1
GOTD 200
EID IF
EID DO
c
40 CALL PERFOR(ALPHA,D, AMAT, BMAT, Q, I,VO, BETA, U10, UOO, AO,BO, 1 DFDRAG,IS, IF, IJLF, IJUS, PHI)
C
200 coitiliue
c
c
c
C
REWIID 1
DO $\mathrm{I}=\mathbf{1 , 1 + 1}$ WRITE(1,111) $\operatorname{IBOD}(\mathrm{I}), \operatorname{YBOD}(\mathrm{I}), \mathrm{VI}(\mathrm{I})$ FORMAT(3F10.5)
EMD DO
c
C *** CLOSE DATA FILES ***
c
CLOSE(UIT=1,STATUS='KEEP') CLOSE (UEIT $=2$,STATUS='REEP') CLOSE(URIT=4,STATUS='REEP') IF(DUMP1) THEI

CLOSE(U⿴囗T $=9$, STATUS $=$ 'REEP') CLOSE (UIIT=10, STATUS ='KEEP') CLOSE (UIIT=11,STATUS ='KEEF') CLOSE(UEIT=12,STATUS='KEEP') EID IF CLOSE(UEIT=20,STATUS='REEP') CLOSE(UIIT=21,STATUS='REEP')
C
STOP
EDD

B.2.1 Sample Input

Below is a set of sample input data contained in file CASE.DAT.

2.0000	Y COORDIIATE OF TEE PRIMARY TOZZLE
1.0000	Y COORDIIATE OF TEE PRIMARY EOZZLE
0.0000	JET IIITIAL CEITERLIEE SLOPE
13.2100	X COORDIEATE OF SHROUD EXIT
0.3640	DIFFUSER SLOPE
9.0000	\underline{Y} COORDIMATE OF THE DIFFUSER START
0.5000	Free-strear speed parameter
10.0000	IMITILL JET CEETERLIEE VELOCITY
0.0150	IIITIAL JET HALF-WIDTA
1	EXTEIDED OUTPUT OPTIOI: 1 FOR EXTRA OUTPUT O FOR PLAII

B.2.2 Sample Output

Below is the output data written to file OUT.DAT

```
PATM = 2.25421 PEXIT = 2.80465 R = -0.55044 U10 = 9.88991
PATM = 2.28385 PEXIT = 2.81609 R = -0.53224 U10 = 8.28042
PATM = 1.94640 PEXIT = 2.25369 R = -0.30729 U10 = 6.08176
PATM = 1.50727 PEXIT = 1.60380 R = -0.09653 U10 = 5.07471
yEU BODY GEEERATED
\begin{tabular}{|c|c|c|c|c|}
\hline PATM = & 1.28629 PEXIT & 31879 R & -0.03250 U10 & 5.06821 \\
\hline PATM & 1.30357 PEXIT & \(1.33681 \mathrm{R}=\) & -0.03323 U10 & 5.36218 \\
\hline PaTM & 1.33723 PEXIT & 1.38920 R & -0.05197 U10 & 4.54686 \\
\hline PATM & 1.26238 PEXIT & 1.26547 R & -0.00309 U10 & 4.49526 \\
\hline PATM & 1.23384 PEXIT & 1.23263 R & 0.00121 U10 & 4.50974 \\
\hline PATM \(=\) & 1.22981 PEXIT & 1.22915 & 0.00066 U10 & 4.527 \\
\hline
\end{tabular}
SHROUD THRUST SIMPSOIS RULE, MIDPOIMT RULE: 0.66204 0.66908
MOZZLE CAP THRUST SIMPSOES RULE, MIDPOIET RULE: 0.029530 .05889
```


B. 3 Subroutine Libraries

B.3.1 Single-Jet Library AUGLIB

SUBROUTIE AUGLYR(I, V, I, R, STIG, DURP, ISTEP, SEP, SCRIT)

C

C TEIS CODE WAS URITTEI FOR THE JOIIT IISTITUTE FOR AERONAUTICS * aild acoustics by thomes Lund. Latest revisioi 8 SEPT. 1984.
this subroutile computes lamilar aid turbuleit bousdary layer**
C DEvELOPMEIT, GIVEI AI EXTERIAL VELOCITY DISTRIbUTIOI. TEE EQUATIOXS *
C SOLVED bere are based oll al fitegral formulatiol of tbe boumdary
c layer equations. il the turbuleit case, the hormal turbuleit
C stresses are meglected il comparisol with the turbulent shearifg
c stress. the turbuleit bouidary layer equations used bere are foutd
C II SCHLICETIUG (7TB ED) P. 676, EqS. (22.7a,b), (22.8a,b), AIID
C FIG 22.7
C THE VELOCITY DISTRIBUTIOE DESCRIBED IEED TOT BAVE A *
C STAGIATIOE POIHT (SEE DESCRIPTIOI OF PARAMETER STAG). TBE CODE *
C ASSUAES THAT LLL BOUEDARY LAYERS HAVE A LAMIVAR ORIGIY. TO AVOID
C SIIGULARITIES AT THE ORIGII, IEITIAL VALUES OF THE VARIOUS CHARAC-
c teristic thichiesses alld shape factors are assuied by computivg
c these quaitities at a shall distaice frok the origil usigg alalytic
C expressiols for 4 larimar bouldary layer il a zero-pressure grad- * c ieft outer streah.
c tee larifar boumdary layer equatious are marched away from the c initial data umitl tae eid of tae body is reached, or either trais- * C ition to turbuleit flou, or lantiar separatioi is detected. if
c lamitar separatioi is detected, the code balts at the poift of
C SEparatiol. if traisitioi is detected, tee code shitches to tee
c turbuleit boudary layer equitions, ald coitinues to march uitil
C either tae eid of tee body is reached, or turbuleit separatiof is
c detected. if turbuleit separatiol is detected, tee code halts at C tee poift of separation.
c If output is spectified (SEe descriptiol of parameters duap aid C ISTEP) THE FOLLOUIIG DATA KILL BE PRIETED TO UIIT 3 FOR SPECIFIED
C values of the surface coordiyate: shape fictor h32, displacemeit c thickiess, homeitum thicriess, emergy teickiess, ald local sim C FRICTIOI COEFFICIEITCOORDIIATE AT WHICH EXTEREAL VELOCITIES ARE GIVEI. THESURFACE COORDIIATES KUST START FROM 2ERO (X (1)=0.0), BEiI imcreasidg order, aid be hormalized by the surfaceLEIGTH ($\mathrm{X}(\mathrm{I})=1.0$).
v - vector of leigth y coitaitidg the values of the exterial velocity which correspold to tee surface coordimates Coithiled in vector 1 . the exterial velocity must be mormalized by the characteristic velocity of the problem

- - fumber of surface coordilate aid exterial velocity data pairs (leigti of vectors I hid V).
- global reymolds lufiber defilied as r=Uc*l/vis, where Uc is the characteristic velocity of the problem, l is the surface leigte, ald vis is the coefficient of rinematic viscasity.
stag - logical variable used to spectfy heetaer or tot a

```
C C STAGIITIOI POIET EXISTS. IF STAG IS SET TO .TRUE. A 
C
    IMPLICIT REAL*8(A-B,0-Z)
    EXTERMAL FCLL, FCIT
    DIMEISIOI X(100),V(100),C(24),V(2,9),Y(2),YD(2)
    COMmOI/BLCVEL/ XX(100),VV(100),RR
    COMMOI/BLCSPLI/ SPLI(100),II
    commol/areaio/ xc
    commol/\REA12/ XEXIT
    LOGICAL STIG, LMIR, SEP, DUMP
    *** FUICTIOI F1 RETURIS H12 GIVEI H32 ***
    F1(H32)=H32/(3.ODO*H32-4.ODO)
        *** FUICTIOI USER RETURIS THE LOCAL TURBULEIT SXII FRICTIOI ***
        *** COEFFICIEET DIVIDED by 2, givEI the Shape factor h12
    *** aId the reymoldS morber based ol homeltum thickiess rd2 . ***
    USHR(H12,RD2)=0.0245DO*(1.ODO-2.O959DO*DLOG1O(H12))**1.705DO
    * /RD2**O.268DO
        *** II ORDER TO PISS SUBROUTIIE ARGUMEITS II COMMOI AS NELL, ***
        *** WE HIVE TO DEFIEE REDUIDAMT ARRAYS XX AID VV, AID ***
        *** COISTAITS RR AID #| ***
    DO 1 I=1,I
        xX(I)=1(I)
        vv(I)=V(I)
    coitimue
    RR=R
    IM=!
    IF=|-1
        *** SPLIIE fit the velocity datI uSIIg auglib routime lispl| ***
    CALL LISPLI(X,V,I,SPLI,IER)
    IF(IER.ME.O) TEEI
        WRITE (3,642) IER
        FORMAT(' II SUBROUTIIE AUGLYR LISLPLI RETURIED UITH THE ERROR'
    * 'COIDITIOI IER =',I5)
```

```
STOP
```

EID IF
, EIERGY THICKMESS $=$ ',E10.4,/,10Y,'
URITE $(3,7)$

FORMAT('
1 VELOCITY')
DO 9 Ix1, I $\operatorname{URITE}(3,8) \quad \mathrm{X}(I), V(I)$ FORMAT(2F10.4) COITITUE
E耳D IF
$R D 2=R * V I * D 2$
*** COMPUTE IHITIAL LailiAR SKII FRICTIOI ***
CALL FAPP (H32, H12, EPS , D, KAPS)
CFL=EPS/RD2
CD=2.ODO*CFL*VI*VI

```
    D1=H12*D2
    IF(DUMP) WRITE(3,10)

IF(DUMP) URITE(3,10)

DUN=0.058DO
IF(DUMP) URITE \((3,20) S I\), \(\mathrm{E} 32, \mathrm{D} 1, \mathrm{D} 2, \mathrm{D} 3, \mathrm{CD}, \mathrm{DUK}\)
FORMAT(7E11.4)
*** IIITIALIZE PARAKETERS FOR TBE IITEGRATIOI LOOP ***
LMNR=, TRUE.
SEP=. FALSE.
\(S=S I\)
\(Y(1)=D 2\)
\(Y(2)=D 3\)
RMARGI=1. ODO
\(R 2=0.058 \mathrm{DO}\)
R3=R2
\(R 4=R 2\)
R \(5=\mathrm{R} 2\)
R6 \(=\) R2
- \(E=2\)
\(T O L=0.001 \mathrm{DO}\)
I I D \(=1\)
\(\mathrm{K}=0\)
*** EITER TEE IETEGRATIOI LOOP ***

DO \(50 \mathrm{I}=1\), IEID
\(\mathbf{R}=\mathbf{R}+1\)
\(\mathbf{S}=\mathbf{S}+\mathrm{DS}\)
*** IITEGRATE EITHER THE LAMIIAR OR TURBULETT BOUTDARY LAYER ***
*** EQUATIOES DEPESDIM OI THE VALUE OF LMER USIBG RK2 ***
IF(LMRR) THER
CALL RK2(ME,FCIL,SI, Y,S)
ELSE
CALL RK2(IE, FCIT, SI, Y, S)
EMD IF
D2 \(=Y\) (1)
D3 \(=Y(2)\)
H32 \(=\mathrm{D} 3 / \mathrm{D} 2\)
CALL LIETRP(S, X, V, SPL■, I, VS, VSD, IER)
IF(IER.EQ.1) THEI
URITE \((3,72) \mathrm{S}\)
FORMAT(' IE AUGLYR LIITRP RETURIED YITE AI ERROR FLAG',/,
, Y HAD THE VALUE',F10.6,' OI EITRY')
STOP
EHD IF
RD2 \(=\) R*VS* D2
*** IF STILL LAMIMAR, CHECK FOR TRAISITIOI ***
IF (LMAR) THEI
IF((H32-(DLOG(RD2)+46.78DO)/34.2DO).LE.O.0) THEI
STRAIS=S
LMIR = FALSE .
EDD IF
EHD IF
IF (LMIR) THEI
```

8
C
C
C
C
C
C
C
c
C
C
*** CEECK FOR LAMIHAR SEPARATIOI IGMORE SEPARATIOI UHICH IS ***
*** PREDICTED DUE TO MOISY VELOCITY DISTRIBUTIOY BEFORE EOSE ***
IF(H32.LT.1.51509. AID.S.GT.O.7) GOTO 70
*** COMPUTE LAMIMAR SKI| FRICTIOI ***
CALL FAPP(H32,H12,EPS,D,KAPS)
CFL=EPS / RD2
CF=2.ODO*CFL*VS*VS
ELSE
*** CHECR FOR TURBULEIT SEPARATIOI ***
IF(H32.LT.1.5) G0TO 70
*** COMPUTE TURBULEET SXII FRICTIOI ***
H12=F1(H32)
CFT=WSHR(H12,RD2)
CF=2.ODO*CFT
EID IF
D12H12*D2
IF(K.EQ.MPRIMT.AID.DUMP) WRITE (3,20) S, B32,D1,D2,D3,CF,RMARGY
IF(R.EQ.EPRI\#T) K=0
COETIIUE
SCRIT=1.ODO
IF(LMER) THE:
IF(DUMP) URITE(3,60)
FORMAT(//,10Y,' LAMIEAR TEROUGHOUT',/10Y,' IO SEPARATION')
ELSE
IF(DUNP) URITE(3,65) STRAIS
FORHAT(//,10X,' TRAESITIOI AT S = ',F8.4,
2
/,10X,' LO SEPIRATIOY'')
EID IF
GOTO 200
*** IF COETROL IS PASSED TO LIEE 7O SEPARATIOM HAS OCCURRED AND ***
*** THE IITEGRATIOI IS SUSPETDED AT TEE POIET OF SEPARATIOI. ***
SEP=. TRUE .
SCRIT=S
IF(LMIR) THEI
CALL FAPP(H32,H12,EPS,D, KAPS)
CF=2.0DO*EPS/RD2*VS*VS
D1=H12*D2
IF(DUMP) URITE(3,20) S,B32,D1,D2,D3,CF,RMARGE
IF(DUTP) URITE(3,80) S
FORHAT(//,10X,' LAMIMAR SEPARATIOT AT S = ',F8.4)
ELSE
H12=2.9999DO
CF=2.0*WSHR(H12,RD2)
D1=112*D2
IF(DUMP) URITE(3,20)S,H32,D1,D2,D3,CF,RMARGI
IF(DUMP) URITE(3,90) STRAIS,S
FORMAT(//,10X,' TRAMSITIOI AT S = ',F8.4,
* /,10X,' TURBULEIT SEPARATIDI AT S = , F8.4)
EHD IF
GOTO 200
RETURI
EID

```
C
SUBROUTIIE BODGEI (XJ, XLIP,THLIP, IJS, IJF, IS, IF)
C

C
IMPLICIT REAL*8(A-B,0-Z)
    DIMEISIOI XP(20), XTEMP(150), YTEMP (150), VMTEMP(150)
    DIMEISIOI XHOSE (25), YFOSE(25), XSPLE(100), YSPLY(100), SPLY(100,3)
    LOGICAL FLAG
    REWIED 1
    REHITD 2
    PI=3.1415926
    FORMAT(3F10.5)
C
    THETA=THLIP/180.ODO*PI
    *** DEFIIE JET BOUIDARY SLOPE TO BE 12 DEG ***
    SLOPE \(=\) DIII(12.0DO/180.ODO*PI)
    *** COMPUTE THE COITROL STATIOI LOCATIOI ***
\(\mathrm{XCOIT}=\mathrm{XJ}+0.7 \mathrm{DO} /\) SLOPE
    \(R I=0.5 \mathrm{DO}\)
    *** If THE LIP ROTATIOI POIIT IS LESS THAT THE IOSE RADIUS, SET ***
    ** TEE LIP ROTATIOI POIET EQUAL TO THE IOSE RADIUS II ORDER TO ***
    *** 1 VOID 1 COITORTED BODY SHAPE ***
    IF(XLIP.LT.RI) XLIP=RI
        *** CEECK TO IISURE THAT THE COITROL STATIOI IS BEHIDD THE LIP ***
        *** ROTATIOI POIIT, IF IOT PRIIT ERROR MESSAGE AED SUSPEID
        *** ExECUTIOI
        ***
        ***
    IF (XLIP.GT. YCOHT) THEI
        URITE \((3,10) \mathrm{XJ}\), YLIP,THIIP
```

10
* ' OI EmTRY WERE',/,' YJ =',F8.4,' XLIP =',F8.4,

* 'THLIP =',F8.4)
STOP
EID IF
*** DEFIIE EXTREMITIES OF TEE SYHIETRY PLAIES ***
X1=-20.
XH=26.
*** I|ITIALIZE PARAMETERS ***
FLAG=.TRUE
DIST=\I-\1
XI=.06
XIM1=0.
C
C *** GEIERATE \& STRIEG OF COORDIHATES WHICE HAVE A RATIO OF ***
C
C
5 0
60
70
C
C
C
C
C

```

```

C *** APPROXIMATELY 0.3. THE MIDDLE SECTIOI OF THE JET BOUYDARY BAS ***
C
c
*** SUCCESSIVE LEMGTHS EQUAL TO 1.5 ***
DO 50 I=1,20
IP(I) = XI
XI=2.5*II-1.5*XIM1
IIMI=YP(I)
IF(XIM1.GT.DIST) GOTO 60
COITIIUE
I=I
Y=0.
J=0.
DO 70 I=1,I
X=YJ-YP(E-I+1)
J=j+1
XTEHP(J) =Y
YTEMP(J)=Y
VETEMP(J)=VI
COITI|UE
*** GEIERATE \& SET OF COORDIMATES FOR THE JET BOUIDARY HEICH HAS THE ***
*** FOLLOWIIGG PROPERTIES: PAIEL LEIGTES IICREASE II \ RATIO OF 1.5 AS***
*** OIE TRIVERSES AWIY FROM THE JET HOZZLE, AYD AS OIE TRAVERSES AWAY***
*** FROM THE COITROL STATIOI HOVIIG TONARDS THE TOZZLE. THE ***
*** COISTAIT I IICREHEIT OF 0.2851.
DI=0.2851DO
DO 80 I=1,16
VI=.15*\operatorname{DSQRT}(1./(I-IJ+0.1))+.2
J=J+1
IF(I.EQ.1) THEI
IJS=J
X=\J
Y=0.ODO
EID IF
IF(1.LT.I.AID.I.LE.6) THEI
X=\J+XP(I-1)
Y=SLOPE* (X-XJ)
EDD IF
IF(6.LT.I.AID.I.LE.13) TEEI
I=Y+DX

```
```

 Y=SLOPE*(X-XJ)
 EID IF
 IF(13.LT.I.AMD.I.LE.18) TEEI
 l=xCOET-XP(17-I)
 Y=SLOPE*(X-YJ)
 EID IF
 \TEMP(J)=1
 YTEMP(J)=Y
 VITEMP(J)=VI
 coetinue
HJF=J
*** gemerate tee poirtS which define the coltrol Statioi ***
X=XCOIT
Y=SLOPE*(X-XJ)
R=.5*(1.-Y)
YC=Y+R
DAIG=PI/8.
ARG=-PI/2.
DO 100 I=1,8
VH=DCOS(AMG+DAIG/2.)
J=J+1
xTEMP(J)=x
YTEMP(J)=Y
VITEMP(J)=VI
AIG=I|G+DAMG
Y=YCOMT+R*DCOS (aIG)
Y=YC+R*DSII(AMG)
cofti|uE
*** gelerate moSe poitms aid store ***
\S=RI*(1.-DSII(TEETA))
x=xS
Y=1.+DTAI(THETA)*(XLIP-X)
XC=\mathbf{x}+\textrm{RI}*DSII(THETA)
YC=Y+RI*DCOS(THETA)
DEL=0.0
IF(DABS(DSI|(THETA)).GT.1.E-3)

* DEL=2.ODO*RE*(DTAD(THETA)-(1.ODO-DCOS(THETA))/DSIY(THETA))
AlG=PI
|RI=|I|T(RI*PI/O.15DO)
DAMG=PI/DFLOAT(IRI)
ICIR=|RI+1
DD 150 I=1,ICIR
XHOSE(I)=\
ymose(I)=y
ITG=ATG-DAIG
ICI=RI*DCOS(AIG)
ETA=RI*DSII(AIG)
XIM1=1
X=YC+1CI*DCOS(PI/2.-THETA)-ETA*DSII(PI/2.-TEETA)
XTMP=\
Y=YC+YCI*DSII(PI/2.-THETA) +ETA*DCOS(PI/2.-THETA)
coHTIIUE
D0 105 I=1,3
XSPLI(I)=XIOSE(4-I)

```
```

 YSPLI(I)=YMOSE(4-I)
 105
COMTITUE
XSPLI(4) =XLIP
YSPLI(4)=1.ODO
DO 107 I=1,3
XSPLY(4+I)=XCOIT- IP(4-I)
YSPLI(4+I)=1.ODO
107
COvTIM
1SPL=7
IFSPL=6
CALL ICSCCU(XSPLI,YSPLI,ISPL,SPLI,100,IER)
IF(IER.EQ.129.OR.IER.EQ.130.OR.IER.EQ.130) THE\#
URITE(3,109) IER
FORMAT(' II BODGEI ICSCCU RETUREED UITH THE ERROR VALUE ',IS)
STOP
EID IF
*** GEIERATE POIMTS BETVEEI THE COMTROL STATIOM AHD HOSE USIMG THE ***
*** SPLIIE FIT
X=YCOMT
Y=1.
VH=0.0
J=J +1
YTEMP(J)=\
YTEMP(J)=Y
DO 110 I=1,3
J=J+1
Y=\COHT- XP(I)
ITEMP(J)=X
CALL I\#TRP(Y, XSPLE, YSPLI,YSPL,SPLI, 100,Y,YD,YDD,IER)
YTEMP(J)=Y
VITEMP(J)=VI
COITIIUE
DX=0.15DO
IE\D=\I|T((X-YS)/DY)
DX=(X-XS)/DFLOAT(IEED)
XM=RT*DCOS(THETA)
FLAG=.TRUE.
L=0
DO 120 I=1,IETD-1
J=J+1
I=\ DX
ITEMP(J) =X
CALL IITRP(X, XSPLI, YSPLI,ISPL,SPLI, 100,Y,YD,YDD,IER)
YTEMP(J)=Y
VITEMP(J)=VI
IF(X.LE.XLIP) TEEI
L=L+1
IF(L.EQ.1) THEI
IS=J-1
FLAG=.FALSE.
END IF
EID IF
COITIMUE
C
C *** GEIERATE THE HOISE POIITS USIIG TEE STORED DATA ***
C
X=YS
DO 151 I=1,ICIR
IF(FLAG.4ID.I.EQ.1) IS=J

```
```

 J= J+1
 1TEMP(J)=xIOSE(I)
 YTEMP(J)=YIOSE(I)
 VYTEMP(J)=VI
    ```
CALL ICSCCU(XSPLI, YSPL置, ISPL,SPLI, 100 ,IER)
IF(IER.EQ.129.OR.IER.EQ.130.OR.IER.EQ.130) THEY
URITE 3,109 ) IER
STOP
ELD IF
\(\mathbf{Y I}=\mathbf{Y}\) TMP
\(\mathrm{L}=0\)
D0 \(170 \mathrm{I}=1,80\)
\(\mathbf{x}=\mathbf{I I}\)
\(\mathrm{J}=\mathrm{J}+1\)
IF(X.LT.XCOIT-.1) TEEI
CALL IITRP ( \(\mathbf{X}, \mathbf{X S P L I}, Y S P L \mp, I S P L, S P L I, 100, Y, Y D, Y D D, I E R)\)
ELSE
\(Y=1.0 \mathrm{DO}+2.0 \mathrm{DO} * \mathrm{RI}\)
EID IF
IF(X.GT.(XLIP +DEL)) THEI
\(\mathrm{L}=\mathrm{L}+1\)
IF(L.EQ.1) \(\quad \mathrm{FF}=\mathrm{J}\)
ETD IF
\(\operatorname{ITEMP}(\mathrm{J})=\mathbf{x}\)
\(\mathbf{Y T E M P}(\mathrm{J})=\mathbf{Y}\)
VETERP \((J)=V I\)
KI=2.2*II-1.2*1IM1
IIM1 =1
IF(XI.GT. MM) GOTO 220
170 COLTIIUE
220
[MAX=J
C
DO \(240 \mathrm{I}=1\), MAX
WRITE':,5) XTEAP(I), YTEMP(I), VETEMP(I)
COITITUE
RETURI
EID
```

```
        SUBROUTIIE CHAIEL(R,XEIIT, YBEGII,XDIF,DIFSLP,DUIP1,
        1 PEXIT,DFDRIG)
C
C************************************************************************************
C SUBROUTIDE CBATEL MARCBES THE JET EQUATIOMS FROM THE STATIOM AT UHICE
C THE OUTER vELOCITY Has become comStayt to the shroud exit. the IMITIAL
C COMDITIOIS FOR IHE TIME MARCH ARE PASSED VIA COMMOM BLOCK FROM SUBROUTILE
JET SI
VECTOR IS EXTEEDED TO 4 ELEMEHTS BY IHCLUDIMG AE IHITIAL VALUE FOR UO OF 1.0 *
C
*** LATEST REVISIOR - 25 JAI 1987 *** *
```

```
<** PARAMETER *
```

<** PARAMETER *
*** PARAMETER DESCRIPTION *** *
I\#PUT:
R - JET PARMMETERS: UO, U1, P, B, DRAG *
XEXIT - Y COORDI\#ATE OF THE SHROUD EXIT *
YBEGII - X COORDIEATE TO START THE MARCEIIG *
XDIF - X COORDIHITE OF THE DIFFUSER START *
DIFSLP - DIFFUSER SLOPE
DUMP1 - LOGICAL VARIABLE TO COITROL OUTPUT *
PEXIT - PRESSURE AT TEE SHROUD EXIT AS COMPUTED BY THE VISCOUS SOLUTIOI
DFDRIG - PRESSURE DRAG ASSOCIATED YITH THE DIFFUSER
R - VECTOR COMTAIHIIG THE JET PARAMETERS IT THE SHROUD EXIT

```


```

C
IMPLICIT REAL*8(1-H,0-2)
LOGICAL DURP1
DIMEISIOY C(24),W(5,9),R(5),RD(5)
COHMOI /DIF/ XD,DS
EXTERIAL FCH2
C
\D=\DIF
DS=DIFSLP
C
PI=3.14159265DO
ALP=DLOG(2.ODO)
M=5
MN=5
TOL=1.D-3
I|D=1
C
UO=R(1)
U1=R(2)
P= R(3)
B=R(4)
H=1. ODO
PSTART=P
HSTART=H
ETAH=DSQRT(ALP)*E/B
RMDOT1=B/SQRT(ALP)*(ETAH*UO+DSQRT(PI)/2.ODO*DERF(ETAR)*U1)
RMJ1=B/SQRT(ALP)*(UO**2*ETAE+DSQRT(PI)*U0*U1*DERF(ETAH) +
1 O.5DO*DSQRT(PI/2.ODO) \#U1**2*DERF(DSQRT(2.ODO)*ETAH)) +
P\#
C
C *** PRITT HEADERS ***
C

```
```

 IF(DUMP1) THEI
 REWIUD(12)
 URITE(12,50) RHJ1, RMDOT1
 FORMAT(/,25X,' JET I| CHAMIEL SOLUTIOE ',/,
 , IMITIAL JET MOMEMTUM = ',F10.5,' IHITIAL HASS = ',
 F10.5)
 MRITE(12,55)
 FORMAT(/,' X UO,UODOT U1,U1DOT P,PDOT',
 1 , B,BDOT')
 EID IF
 C
DX=0.25DO
DISI=YEXIT- YBEGII
|PTS =|IIT(DIST/DX)
DY=DIST/DFLOAT(EPTS)
Y=\BEGII
C
C *** MARCE THE VISCOUS SOLUTION ***
C
DO I=1,UPTS
YERD=\mathbf{Y}+D\mathbf{Y}
CALL DVERK(M,FCH2,X,R, XEHD,TOL,IND,C,MW,H,IER)
C
IF(DUMP1) THEE
CALL FCI2(H,X,R,RD)
URITE(12,60) X,(R(J),J=1,4),Y,(RD(J),J=1 , 4)
FORHAT(5F11.5,/,5F11.5,/)
EHD IF
C
EID DO
C
C
C
P=R(3)
H=HSTART+(X-IDIF)*DIFSLP
PEXIT=P
DFDRAG=R(5)-(P-PSTART)*HSTART
C
UO=R(1)
U1=R(2)
B= R(4)
ETAB=DSQRT(ALP)*H/B
RMDOT=B/SQRT(ALP) \#(ETAH*UO+DSQRT(PI)/2.ODO*DERF(ETAH)*U1)
RMJ=B/SQRT(ALP)* (UO**2*ETAB+DSQRT(PI)*UO*U1*DERF(ETAB) +
1 0.5DO*DSQRT(PI/2.ODO)*U1**2*DERF(DSQRT(2.ODO)*ETAH)) +
2 P*HSTART+DFDRAG
C
IF(DURP1) THEI
URITE(12,70) RMJ , RHDOT
FORMAT(' FIIAL MOMEYTUR = ',F10.5, ' FIIAL MASS = ',F10.5)
EED IF
C
RETURI
EPD

```

\section*{SUBROUTIIE FAPP(H32, B12, EPS , D, KAPS)}

C
C*****************************************************************************
C
C TEIS SUBROUTIEE COHPUTES THE LOCAL SRII FRICTIOI COEFFICIEET (EPS), AHD * C THE LOCAL DISSIPATIOI COEFFICIEIT (D) FOR THE LAMIBAR BOUHDARY EQUATIOMS.
C
C *** PARAMETER DESCRIPTIOI ***
C
C IIPUT:
H32 - SHAPE FICTOR
H12 - SHAPE FACTOR
C
C OUTPUT:
C EPS - LOCAL SKII FRICTIOI COEFFICIEIT
C D - LOCAL DISSIPATIOI COEFFICIEIT
C RAPS - LAMIIAR SEPARATIOI PARAMETER. KAPS=1 FOR ATTACHED FLOU AED *
C KAPS=O FOR SEPARATED FLOW
C
C****************************************************************************
C
IMPLICIT REAL*8(1-H,O-Z)
KAPS표
\(\mathrm{D}=7.853976 \mathrm{DO}-10.260551 \mathrm{DO} * \mathrm{H} 32+3.418898 * \mathrm{H} 32 * \mathrm{H} 32\)
IF(H32-1.51509DO) 10, 20,30
10 K \(\triangle P S=0\)
RETURI

* * H32* H 32 ) \(=\mathrm{DSQRT}(\mathrm{H} 32-1.51509 \mathrm{DO}\) )
\(E P S=2.512589 D 0-1.686095 \mathrm{DO} * \mathrm{~B} 12+0.391541 * \mathrm{H} 12 * \mathrm{H} 12-0.031729 * \mathrm{~B} 12 * * 3\). DO
RETURI
30 IF (H32-1.57258DO) \(21,21,40\)
21 GOTO 20
40 E12 \(2=79.870845\) DO-89.582142DO* \(\mathrm{H} 32+25.715786 \mathrm{DO} * \mathrm{~B} 32 * \mathrm{H} 32\)
EPS \(=1.372391-4.226253 * H 32+2.221687 * B 32 * H 32\)
RETUR
EID

SUBROUTIIE FCII (I, \(\mathbf{I}, \mathrm{S}, \mathrm{SD}\) )
C
C***************************************************************\#***************
C THIS SUROUTI COMPUTES
C THIS SUBROUTIIE COMPUTES THE DERIVATIVES OF THE JET PARARETERS FOR USE
C II MARCHIEG OF TEE VISCOUS SOLUTIOI WITHI』 THE VISCOUS-IIVISCID IETERACTIOR *
C REGIOI. THE DERIVATIVE OF UO IS FOURD FROM THE IEVISCID SOLUTIOE VIA A *
C LIMEAR SPLIIE FIT.
*** LATEST REVISIOI: - 24 JAI 1987 ***
*** PARAMETER DESCRIPTIOI ***
IMPUT:
I - TURBER OF DIFFEREITIAL EQUATIOIS II THE SYSTEM,
\(\mathbf{x}\) - CARTESIAI COORDIIATE
S - vector comtarifig the values of Uo, u1, p aid b at the statiol \(x\)
SD - VEctor coitailigg tee derivative values of vo, ui, paid b at tee STATIOI Y

C
C******************************************************************************
C
IMPLICIT REAL*8(4-H,0-Z)
DIMEHSIOI S(4), SD(4), C(2,2), UK (2, 2), RHS (2)
COMMOL/AREA1/ XE(50), UE (50), SPL \((50,3)\), IJ
```

 *** FIID THE DERIVATIVE OF UO THROUGH INTERPOLATION OF THE ***
 *** SPLIIE FIT
    ```
    CALL IITRP(X,XE, UE, IJ, SPL, 50, UO, UODOT, D2,IER)
    IF (IER.IE.O) THEI
        \(\operatorname{URITE}(3,10) \mathbf{x}\)
        FORMAT(, II FCII IUTRP RETUREED WITE AI ERROR FLAG', /,
    * ' \(Y\) 日AD THE VALUE',F10.6,' OI EITRY')
        STOP
    EID IF
C
C *** COMPUTE THE DERIVATIVES OF THE PARAYETERS UO, U1, B, AID P ***
C
    SQRT2=DSQRT (2.ODO)
    \(\triangle L P E A=D S Q R T(D L O G(2.0 D 0))\)
    RK=0.0283
C
        \(\mathrm{U}=\mathrm{S}=(1)\)
        \(U 1=S\) (2)
        \(P=S(3)\)
    \(B=S(4)\)
        \(C(1,1)=U 0+S Q R T 2 * U 1\)
        \(C(1,2)=U 1 / B *(U 0+S Q R T 2 / 2.0 D 0 * U 1)\)
        \(C(2,1)=S Q R T 2 * U O * * 2+3 . O D O * U O * U 1+\operatorname{DSQRT}(1.5 D O) * U 1 * * 2\)
        \(\mathrm{C}(2,2)=\mathrm{U} 1 / \mathrm{B} *(\mathrm{SQRT} 2 * \mathrm{UO} * * 2+1.5 \mathrm{DO} * \mathrm{UO} * \mathrm{U} 1+\)
    1
        \(\mathrm{D} 1=2 . \mathrm{ODO} * \mathrm{U} 1\)
        \(\mathrm{D} 2=\mathrm{U} 1 *(2.0 \mathrm{DO} * \mathrm{SQRT} 2 * \mathrm{UO}+1.5 \mathrm{DO} * \mathrm{U} 1)\)
        \(T 1=0.0 D 0\)
        T2 \(=-\mathrm{RK} *(1 L P H A * * 2) *(\mathrm{U} 1 * * 3) / B\)
        RES (1) \(=T 1-D 1\) * UODOT
        RES (2) \(=T 2-D 2 *\) UODOT
C
    CALL SIMQ (C, WK, RES , 2,2,IER)

\section*{c}
\(S D(1)=\) UODOT
\(S D(2)=R B S(1)\)
\(\operatorname{SD}(3)=-\) UO * UODOT
\(S D(4)=\) RHS (2)
C
RETURI
EID

SUBROUTIIE FCI2(I, \(\mathrm{X}, \mathrm{R}, \mathrm{RD})\)
C
C***************************************************************************
c
c this subroutide computes the derivitives of the jet parameters uo, u1, C b, alld p for use il marchigg the viscous solutiol if tee hitilg ceatel, C DOUMSTREAM OF the viscous-IUviscid ilteractiol zoie.
c *** Latest revisioi - 26 Jall 1987 ***
c
C *** PARAMETER DESCRIPTIOI ***
c IHPUT:
C 1 - lumber of differeitial equitioys
c \(X\) - Cartesial coordimate
C r - vector containigg the values of uo, ui, p, b, ayd drag at the statiol x* C rd - vector coftailigg the derivative values of vo, ui, p, b, aid drag *
C at The Station X *

C*************************************************************************
c
Implicit real* 8 (a-b,0-z)
DIMEMSIOI \(R(5), R D(5), A(4,4), T(4), W K(4,4)\) COMMOI /DIF/ XDIF,DIFSLP

IF(X.GT. YDIF) TREI
\(\mathrm{B}=1 . \mathrm{ODO}+(\mathrm{X}-\mathrm{XDIF}) *\) DIFSLP HD=DIFSLP
ELSE
HD=0.ODO
\(\mathrm{H}=1\). ODO
END IF
\(\mathrm{UO}=\mathrm{R}\) (1)
\(\mathrm{U}=\mathrm{R}\) (2)
\(\mathrm{P}=\mathrm{R}(3)\)
\(B=R(4)\)
C
Call matrix (U0, U1, B, \(\mathrm{H}, \mathrm{HD}, \mathrm{A}, \mathrm{T}\) )
CALL SIMQ(A, WR, \(\mathrm{T}, 4,4\), IER)
C
\(R D(1)=T(1)\)
\(R D(2)=T(2)\)
\(R D(3)=T(3)\)
\(R D(4)=T(4)\)
\(\operatorname{RD}(5)=\mathrm{F} * \mathrm{RD}(3)\)
C
RETURI
EED
```

 SUBROUTIIE FCEL(IE,S,Y,YD)
 C
C**
C THIS SUBROUTIEE COMPUTES TRE DERTVATIVES OF DO ATD DS FOR THE IAMTIAR *
C THIS SUBROUTIIE COMPUTES TEE DERIVATIVES OF D2 AID D3 FOR THE LAMIMAR *
C bOUIDARY layER EqUATIOMS. A CALL TO SUBROUTIME FAPP IS EECESSARY.
C *** PARAMETER DESCRIPTIOI ***
C IE - EURBER OF DIFFEREITIAL EQUATIOIS, II THIS CASE 2
C S - SURFACE COORDIIATE
C Y - vector containing the values of d2 ald d3 at the Statiol S
C YD - VEGTOR COITAIEIIG THE DERIVATIVE VALUES OF D2 AID D3 aT THE STATIOR S *
C
C***
C
IMPLICIT REAL*8(1-H,O-Z)
DIMESSIOI Y(ME), YD(IE)
COMMOI /BLCVEL/ Y(100),V(100),R
COMMOI /BLCSPLI/ SPL.I(100),I
D2=Y(1)
D3=Y(2)
H32=D3/D2
C
C *** CORPUTE THE FRICTIOI AID DISSIPATIOI COEFFICIEITS ***
C
CALL FAPP(H32, H12,EPS ,D,KAPS)
C
C
*** COMPUTE THE LOCAL SURFACE VELOCITY ADD ITS DERIVATIVE ***
*** FROM THE LIIEAR SPLIIE FIT
CALL IIETRP(S,Y,V,SPLI,I,VS,VSD,IER)
IF(IER.EQ.1) THE|
WRITE(3,71) S
FORMAT(' II FCUL LIITRP RETURIED WITE AM ERROR FLAG',/,
\& 'X bAD THE VALUE',F10.6,' OI EITRY')
STOP
EHD IF
RD2 = R*VS*D2
CFL=EPS/RD2
YD(1)=-(2.ODO+H12)*D2/VS*VSD + CFL
YD(2)=-3.ODO*D3/VS*VSD + 2.ODO*D/RD2
RETURI
ETD

```
```

SUBROUTIUE FCIT(IE,S,Y,YD)

```
c
```

C***
C THIS SUBROUTIIE COMPUTES THE DERIVATIVES OF D2 AID D3 FOR USE II THE
c marching of tae turbulest boundary layer equations.
*** Parameter description ***
IMPUT:
me - fumber of differemtial equations, in this CaSe 2
s - surface coordimate
Y - vector comtaimimg tee values of d2 aid d3 at the STATIOI S *
yd - vector comtaifigg the derivative values of d2 afd d3 at the station S *
C
C**

```
C
    IMPLICIT REAL*8(1-H,0-Z)
    dimedidil y (IE), yD(IE)
    COMMOI/BLCVEL/ Y(100),V(100),R
    COMMOI /BLCSPLI/ SPLI(100),I
        *** FUictiol f1 returus hi2 GIVEI h32 ***
    F1 (H32) \(=\mathrm{B} 32 /(3.0 \mathrm{DO} * \mathrm{~B} 32-4\). ODO)
        *** fuiction wher returis the local turbuleit skif friction ***
        *** COEFFICIEIT, GIVEI TEE SHape Factor h12, aID THE REYMOLDS ***
        *** yumber based oi momeztum thickiess rd2 ***
    \(\operatorname{WSER}(\mathrm{H} 12, \operatorname{RD} 2)=0.0245 \mathrm{DO} *(1 . \mathrm{ODO}-2.0959 \mathrm{DO} * \operatorname{DLOG1O}(\) H12 \()) * * 1.705 \mathrm{DO}\)
    * /RD2**0.268D0
        *** fuiction cdiss returis tae local turbuleit dissipation ***
        *** CoEfFICIEIT ***
        CDISS (H32,RD2) \(=(0.00481\) DO \(+0.0822 \mathrm{DO} *(\) H32-1.5DO \() * * 4.81 \mathrm{DO})\)
    **( \(\mathrm{H} 32 / \mathrm{RD} 3) * *(0.2317 \mathrm{DO} * \mathrm{~B} 32-0.2664 \mathrm{DO}-0.87 \mathrm{D} 5 *(2 . \mathrm{ODO}-\mathrm{H} 32) * * 20)\)
        D2 \(=\mathrm{Y}\) (1)
        D3 \(=\mathrm{Y}\) (2)
        H32 \(=\) D3/D2
        H12 \(=\) F1 ( H 32 )
            *** to avoid sidgularities at separatioi, put barriers oi ***
            *** 132 1ID 112 ***
    IF(H32.LT.1.5) \(\mathrm{H} 32=1.51\)
    IF (H12.GT.3.0) \(\mathrm{H} 12=2.99\)
            *** fild the local surface velocity and its derivative througe ***
            *** use of the lifear splite fit ***
        CALI LIMTRP(S, X,V,SPLI,I,VS,VSD,IER)
        IF(IER.EQ.1) THEI
            WRITE \((3,71)\) S
            format' ' il fatit littrp returied with ait error flag',/,
            2 ' 1 bad the value',f10.6,' oI eitry')
            stop
        Ell IF
        RD2 \(=\) R*VS \(* D 2\)
        RD3=R*VS*D3

CT=USER(E12,RD2)
CD=CDISS (H32,RD3)
\(Y D(1)=-(2 . O D O+E 12) * D 2 / V S * V S D+C T\)
\(Y D(2)=-3.0 D O * Y(2) / V S * V S D+2 . O D O * C D\)
RETUR
EDD
```

C
C***
C
C SUBROUTI|E FRESTM COHPUTES THE FREE STREAM VELOCITY WHEI GIVEI THE *
C PARAMETER GAMRA AID THE PRIMARY JET PARAMETERS. *
C *** LATEST REVISIOI - 23 APRIL 1987 ***
C
C *** PARAMETER DESCRIPTIO| ***
C IMPUT:
C U10 - IIITIAL JET EXCESS VELOCITY
C BO - IIITIAL JET HALF-WIDTH
C UOO - IHITIAL JET EXTERMAL VELOCITY
C GAMMA - IOI-DIMEISIOIAL FREE SPEED PARAMETER
C
C vo - free stream velocity
C *
C**
C
IMPLICIT REAL*8(A-H,O-Z)
C
ILP=DLOG(2.ODO)
PI=3.1415926DO
C
C *** COMPUTE THE PRIMARY JET MOME|TUM FLUX.
C
RMJ=DSQRT (PI/ALP)*UOO*U10*BO+0.5DO*DSQRT (PI/2.ODO/ALP)*U1O**2*BO
C
C *** COMPUTE THE FREE STREAM VELOCITY
C
VO=GAMMA*DSQRT(RMJ/2.ODO)
C
RETURM
EED

```
```

SUBROUTIIE GETPRM(XJ,ILIP,TGIIP, XEXIT, YDIF,DIFSLP,GANPM, U1O, DUHP1
1 BLAYER,RE)

```
C

C
C GETPRM READS PARAMETER VALUES FROM \(\perp\) DATA FILE WHICH IS ASSIGIED UIIT 4 *
C *** LATEST REVISIOI - 22 APR 1987 ***
C ** PARAMETER DESCRTPTIOI ***
C DUTPUT:
C XJ - I COORDIVATE OF THE JET HOZZLE
C XLIP - X COORDIIATE OF THE SERDUD LIP
C THLIP - SEROUD LIP ROTATIOI AMGLE (II DEGREES)
C XEYIT - I COORDIIATE OF TRE SERDUD EXIT
\(C\) YDIF - Y COORDIIATE OF THE DIFFUSER START
C DIFSLP - DIFFUSER SLOPE
C GAMMA - FREE-STREAM SPEED PARAMETER
C U10 - JET IIITIAL VELOCITY
C DUMP1 - OUTPUT COMTROL
C BLAYER - bOUIDARY LAYER COHPUTATIOI COITROL PARAIETER *
C RE - REYIOLDS IUGBER BASED OI JET THRUST
C
C**********************************************************************************
C
        IMPLICIT REAL*8(A-H,0-Z)
        LOGICAL DUMP1, BLAYER
C
    READ (4, *) YJ
    \(\operatorname{READ}(4, *) \mathrm{XLIP}\)
    READ (4,*) THLIP
    READ (4,*) IEXIT
    READ (4,*) XDIF
    RELD(4,*) DIFSLP
    READ (4,*) GAMMA
    READ (4,*) U10
    READ (4;*) DUMP1
    READ (4,*) BLAYER
    \(\operatorname{READ}(4, *) \operatorname{RE}\)
C
    RETURI
    EID
```

 SUBROUTIIE JET(IJS, IJF,XJET,YJET,UJET,VJET,IJET,U1O,BO,VI,I,
 1 DUMP1,ICALL,XEMD,R,RES)
 C
C**
C SUBROUTIIE JET PERFORMS THE VISCOUS CALCULATION HITHII TBE VISCOUS- *
IIVISCID IETERACTIOI REGIOI. THE DERIVATIVE OF UO IS FOURD FROM THE *
C INVISCID SOLUTIOI VIA A QUASI-HERMITE SPLIEE FIT, AED IS USED AS A FORCIMG *
C TERM II THE VISCOUS SOLUTIOI. *
C
*** LATEST REVISIOI - 23 4PR 1987 *** *
*** PARAMETER DESCRTPTIOI *** *
IMPUT:
IJS - PAMEL IIDEX OF JET BOUIDARY START
\#JF - PAMEL IIDEX OF JET BOUMDARY FIIISB
XJET - VECTOR OF I COORDIIATES ALOIG TEE JET BOUIDARY
YJET - VECTOR OF Y COORDIEATES ALOMG THE JET BOUMDARY
UJET - VECTOR OF HORIZOITAL VELOCITY LLOMG THE JET BOUYDARY *
VJET - VECTOR OF VERTICAL VELOCITY ALOEG THE JET BOUIDARY *
HJET - MUMBER OF POIMTS ALOIG TEE JET BOUIDARY *
U10 - JET IIITIAL CEETERLIIE VELOCITY *
BO - JET IIITIAL VELOCITY HALF-WIDTH *
VIH - vEctor comtaiHIIG tHE IORMAL vELOCItIES TO THE PAIELS ALOHG THE JET *
BOUYDIRY II THE VISCOUS-IIVISCID I|TERACTIOI REGIOI *
M - IUMBER OF PAIELS *
L. \&P1 -LOGICAL VARIABLE FOR OUTPUT COETROL
yCALL -I|DEX TO REEP TRACK OF THE SUCCESSIVE CALLS TO JET
OUTPUT:
VI - UPDATED IORMAL VELOCITY VECTOR
XEMD - X STATIOI AT UHICE THE VISCOUS-IIVISCID MATCHIIG EIDS
R - vector comTAIIIIg THE VALUES DF THE JET PARAMETERS AT THE EHD OF
THE VISCOUS-IIVISCID MATCHIIG REGIOI
RES - MAYimN RESIDUAL II THE VISCOUS-I位SCID MATCEIEG
**
C
IMPLICIT REAL*8(A-H,0-Z)
LOGICAL DURP1
DIMEISIOI YJET(IJET), YJET(HJET), UJET(IJJET),VJET(IJJET),VI(I),
1 U(4,9),C(24),S(4),SD(4),SPLM(SO,3),R(5)
DIMEISIOI ITMP(300),YTHP(300)
COMMOU /\REA1/ IE(50),UE(50),SPL(50,3),IJ
EXTERTAL FCH1
C
PI=3.141592DO
ALP=DLOG(2.ODO)
M=4
MW=4
TOL=1.D-4
IID=1
*** PRIIT HEADERS ***
IF(DUMP1) THEI
REHIMD }
REWIID 10
URITE(9,45)
FORMAT(/,25I, ' JET VELOCITIES ')

```
```

 WRITE(9,40)
 FORMAT(/,', y U Y Y VIVV VITV VVIS',
 URITE(10,50)
 FORMMT(/,25X,' JET SOLUTIOI ')
 URITE(10,55)
 FORMAT(/,' X UO,UODOT U1,UIDOT P,PDOT',
 1
 EID IF
 IJ=IJET

```
    DO I=1,|JET
        XE(I)=XJET(I)
        UE(I)=UJET(I)
        SPL(I,1)=SPLI(I,1)
        SPL(I, 2) =SPLI(I,2)
        SPL(I,3)=SPLI(I,3)
    ETD DO
        *** DEFI|E IIITIAL VALUES OF THE JET PARAMETERS ***
        ***S(1)<--UO,S(2)<--U1,S(3)<--P,S(4)<--B ***
        UOO=UJET(2)
        PO=O.ODO
C
    S (1) =000
    S(2)=U10
    S(3) =PO
    S(4)=BO
C
C
C
Y=XJET(2)-.001DO
    DO 10 J=2,1JET
        YE|D=\JET(J)
        CALL DVERE(H, FCII, X,S , YEID, TOL,IED, C, HH,W,IER)
        IF(ITD.LT.O.OR.IER.GT.O) THEI
            WRITE(3,150) IFD,IER
        FORMAT(/,'II JET IMD= ',I5,' IER= ',I5,/)
            STOP
            EID IF
C
C *** OBTAI| THE LOCAL DERIVATIVE VALUES OF THE JET PARAMETERS ***
CLLL FCI1(M,XEMD,S,SD)
C
```

C
c

REHIED 1
DO I=1,I
$\operatorname{READ}(1, *)$ XTHP(I), YTIIP(I)
EHD DO
REWIID 1
DO $I=1$, I
$\operatorname{URITE}(1,11) \quad \mathrm{ITAP}(I), Y \operatorname{TMP}(I), V I(I)$
FORHAT(3F10.5)
EID DO
IF(IER.EQ.1) THEI
YRITE $(3,12)$ XELD ' \mathbf{X} BAD TEE VALUE', F10.6,' 0I EITRY')
STOP
EID IF

VVIS $=V(S, S D, Y J E T(J))$
*** BOUTDARY
RR=VVIS-VJET(J)
IF (DABS (RR).GT.RES) RES = DABS (RR)
$\mathrm{H}_{1}=1.0 \mathrm{DO}-0.7 \mathrm{DO} /$ DFLOAT (HJET-2) *DFLOAT (J-2)
$J J=1 \mathrm{JS}-1+\mathrm{J}$
$V H E M=V H(J J)-W 1 * R R$

IF (DUMP1) THEI

FORMAT(8F10.5)
$\operatorname{URITE}(10,65) \mathrm{YJET}(\mathrm{J}), S(1), S(2), S(3), S(4)$,
FORMAT(5F10.5,/,5F10.5,/)
EHD IF
*** STABILITY
IF(J.EQ.2) VI(IJS)=VIEW
VY(HJS-1 + J) =VIES
COHTIINE
coitinue
*** Compute the local ivviscid velocity ayd its derivative ***
CALL IITRP(XEID, XJET, UJET, HJET, SPLI, 50, UO, UODOT, D2, IER)

FORMAT(' II JET IITRP RETURIED WITH AI ERROR FLAG',/,

*** COMPUTE THE VERTICAL COMPOEEET OF VELOCITY AT THE JET ***
 *** BOUTDARY FROM THE VISCOUS SOLUTIDI

*** CORPUTE TEE LOCAL RESIDUAL BY COMPARIMG THE VISCOUS AED ***
*** IIVISCID VERTICAL COMPOHENTS OF VELOCITY ALOEG TEE JET ***
*** MAKE A CORRECTIOI TO THE LOCAL EITRAIIMEET VELOCITY ***
$\operatorname{WRITE}(9,60)$ XJET (J) , YJET(J), UJET(J), VJET(J), VVIS, VI (JJ), $\mathrm{XJET}(\mathrm{J}), \operatorname{SD}(1), \operatorname{SD}(2), \operatorname{SD}(3), \operatorname{SD}(4)$
*** MARE FIRST PAIEL SUCTIOI EQUAL TO TBE SECOID TO EKHAFCE ***
*** IIITIALIZE PARAMETERS FOR TEE CRAMEEL SOLUTIOI ***
$R(1)=S(1)$
$R(2)=S(2)$
$\mathrm{R}(3)=\mathrm{S}(3)$

```
SUBROUTI|E JETCOF(IJS,IJF, YCP,YCP, ALPHA,D,IID1,ITD2,PD,PE,PF,
                PG, PR,PPI,C,NORR, A, B, AMAT,BMAT,I,
                XJET, YJET, IJET, \JET, BJET)
C
C***********************************************************************************
C SUBROUTIIE JETCOF COMPUTES THE IPFLUEICE COEFFICIEITS FOR TRE MATCEIBG
C POIMTS ALOMG THE JET BOUEDARY.
    LATEST REVISIO| 23 APR 1987
    *** PARAMETER DESCRIPTIOI ***
    I|PUT:
IJS - PAYEL IUYBER OF THE BEGIIEIIGG OF THE JET BOUIDARY
EJF - PAIEL IURBER OF THE EMD OF THE JET BOUIDARY *
XCP - VECTOR OF COITROL POIIT X COORDI|ATES *
YCP - VECTOR OF COITROL POIET Y COORDIIATES *
ALPEA - VECTOR COITAIEIEG THE SURFACE SLOPES *
D - VECTOR COMTAIIIIG THE PAIEL LEIGTES *
IED1 - VECTOR OF IHDEX OF PAEEL ADJOIIIIG TO THE LEFT *
IND2 - VECTOR OF IMDEY OF PAIEL ADJOIEI#G TO THE RIGHT *
C PD..PPI- SOURCE PARABOLIC FIT COEFFICIEETS *
C - VEC-^ OF SURFACE CURVITURE COEFFICIEYTS *
WORK - HORX SPACE VECTOR *
A - HORK SPACE VECTOR *
C B - YORK SPACE VECTOR *
C AMAT - MATRIX OF I COHPOIENT IIDUCED VELOCITIES *
BMAT - MATRIX OF Y COMPOHERT IHDUCED VELOCITIES *
| - EUMBER OF PAIELS
    OUTPUT:
XJET - VECTOR OF X COORDIIATES OF THE COITROL POIITS ALOIG TEE BOUNDARY
C YJET - VECTOR OF Y COORDI|ATES OF THE CO#TROL POIITS ALOIG THE BOUWDARY
C HJET - IUNBER OF POIITS ALOEG THE JET BOUIDARY
C AJET - MATRIX OF U-VELOCITY IIFLUEICE COEFFICIE|TS FOR THE JET BOUNDARY
C BJET - MATRIX OF V-VELOCITY I|FLUEICE COEFFICIE|TS FOR THE JET BOU|DARY
C
```



```
C
    IRPLICIT REAL*8(A-H,O-Z)
    DIMEUSIOI ICP(I),YCP(I), LLPH\(I),D(I),PD(I), PE(I), PF(I),PG(I),
    1 PH(I),PPI(I),C(I),IED1(I),IID2(I),WORX(8*I),A(I),B(I),
    2 XJET(IJET),YJET(IJET), \triangleJET(MJET,|),BJET(IJJET,I),
    MMAT(I, I), BMAT(I, E)
C
C
C *** CLLCULATE AID STORE THE IMFLUEICE COEFFICIENIS FOR THE ***
C *** JET BOUNDARY
C
    DO I=\JS,IJF
    II=I-IJS +1
    X=XCP(I)
    Y=YCP(I)
    XJET(II) =\
    YJET(II) =Y
C
    DO J=1,I
        4.JET(II, J)=AMAT(I,J)
        BJET(II,J)=BMAT(I ,J)
    EID DO
```

```
C
C *** COMPUTE THE VELOCITY AT & POIIT SLIGBTLY ABOVE THE JET ***
C
C
C
C
    1
        *** BOUIDARY YHET EEAR THE COETROL STATIOI TO AVOID THE SPIRE
        *** IE TEE VELOCITY FIELD CAUSED BY THE CURVATURE DISCOITI#UITY ***
        *** &T THE COITROL STATIOI.
        IF(I.GT.(IJF-5)) THEI
        YM=Y+(X-YCP(1JF-5))*0.15D0
        CALL I#FLCE(X,YM, XCP,YCP, ALPHA,D,I\D1,I#D2, PD, PE,
            DO J=1,%
                AJET(II,J)=A(J)
            EID DO
        EID IF
C
    E\D DO
C
RETURI
EID
```

```
    SUBROUTIIE JETVEL(AJET, BJET,HJET,Q,|,VO, BETA,UJET,VJET, UOO,PATM)
```

C
$\mathrm{C} * *$
C
C
C
C
C
C
C *** PARAMETER DESCRIPTIOI *** *
C
C ITPUT:
AJET - IIFLUEICE COEFFICIEITS FOR U-VELOCITY ALOMG THE JET BOUMDARY *
BJET - I\#FLUEICE COEFFICIEITS FOR V-VELOCITY ALOIG THE JET BOUIDARY *
C HJET - HHBER OF PAEELS ALOIG THE JET BOUIDARY *
C q - VECTOR OF SOURCE STREUGTES *
C - MUMBER OF PAIELS *
C VO - FREE STREAM SPEED *

OUTPUT: *
UJET - VECTOR OF HORIZOITAL COMPOIEIT OF VELOCITY ALOMG TBE JET BOUHDARY *
C VJET - VECTOR OF VERTICAL COMPOIE日T OF VELOCITY ALORG TBE JET bOUNDARY
C UOO - UO COMPOIEET OF VELOCITY $1 T$ TEE JET MOZZLE
C PATM - UPSTREAM AYBIEIT PRESSURE
C
C

IMPLICIT REAL* $8(\mathbf{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z})$
DIHESSIOI AJET(IJET, I) , BJET(IJET, I) , Q(I) , UJET(YJET), VJET(IJET)
C
C
C
DO $\mathrm{I}=1$, IJET
SUM1 $=0.0 \mathrm{DO}$
SUM2 $=0.0 \mathrm{DO}$
DO $\mathrm{J}=1$, I
SURI $=$ SUM $1+\mathbb{A}$ JET $(I, J) * Q(J)$
SUA2 $=$ SUA $2+$ BJET $(I, J) * Q(J)$
EVD DO
$\operatorname{UJET}(\mathrm{I})=\mathrm{VO} * \mathrm{DCOS}($ BETA $)+$ SUM1
$\operatorname{VJET}(I)=V O * \operatorname{DSII}(B E T A)+$ SUM2
EED DO
C
*** CALCULATE TEE UPSTREAM ATMOSPEERIC PRESSURE ***
C
PATM $=0.5$ DO* (UJET(2)**2-VO**2)
UOO=UJET (2)
C
RETURI
EID

```
    SUBROUTIIE MATRIX(UO,U1, B, H,HDOT, A,T)
C
C*************************************************************************************
C
C SUBROUTIIE MATRIX COMPUTES THE MATRIX ELEMEITS IED RIGHT EAID SIDE OF THE
C EQUATIOIS FOR THE DERIVATIVES OF THE JET PARAMETERS. *
C *
C *** LATEST REVISIOI - 26 JAI 1987 *** *
C **
*** PARAMETER DESCRIPTIOM *** *
C I|PUT:
C UO - JET EXTERIAL VELOCITY *
C U1 - JET CEITERLIIE EXCESS VELOCITY *
C B - JET EXCESS VELOCITY BALF-WIDTH *
C H - CEAHIEL HALF-WIDTH
C HDOT - CHAEEEL SLOPE *
C *
C OUTPUT: *
C 4 MATRIX ELEMEITS *
C T - RIGBT GAID SIDE VECTOR *
C T
C*************************************************************************************
C
    IMPLICIT REAL*8(A-H,0-Z)
    DIMEISIO\ (4,4),T(4)
C
    ALP=DSQRT(DLOG (2.ODO))
    PI=3.14159265DO
C
        ETAB=1LP*H/B
        ETAH2=ETAB**2
        ETAH3-ETAR**3
        E1=DEYP(-ETAR2)
        E2=DEXP(-2.ODO=ETAR2)
        F1=DSQRT(PI)/2.ODO*DERF(ETAH)
        F2=DSQRT(PI/2.ODO)/2.ODO*DERF(DSQRT(2.ODO) *ETAE)
        UH=UO+U1 *E1
        IUY1=UO-UH/2.ODO
        4UX2=F1-ETAB*E1
        AUX3=F2-ETAH*E2
        AUX4=1.ODO-E1
        IUX5=1.ODO-E2
        AUX6=(2.ODO* AUY2-F1)*F1
        \triangleUX7=(1.ODO+ETAH2)*E1
        RK=0.0283DO
        CS=2.ODO*RK*(ALP**2)*(U1**2)/B
C
    A(1,1)=AUX1*ETAE+U1*F1
    A(1,2)=AUY1 * F1 +U1 * F2
    A(1,3)=0.5DO*ETAH
    A(1, 4)=(U1/B)* (AUY1*AUX2+0.5DO*U1* AUX3)
    A(2,1)=UO*ETAH2+U1*(3.ODO*AUY4-2.ODO*ETAE2*E1)
    A(2,2)=UO*AUX4 4+U1*(AUX5+AUY6)
    A(2,3) =ETAH2
    A(2,4)=(U1/B)*(2.ODO*UO*(1.ODO-AUXT) +U1*(AUX6+O.5DO*AUX5))
    A(3,1)=1.ODO/3.ODO*UO#ETAH3+U1*(2.ODO*AUY2-ETAH3*E1)
    A(3,2) =0.5D0*UO*IUL2 +U1*(0.5DO*AUI3+F2-AU\7*F1)
    \(3,3)=1.ODO/3.ODO#ETAH3
    A(3,4)=(U1/B)*(UO* (1.5DO*AUL2-ETAB3*E1) +
    1 U1*(-AUY7*F1+F2+0.25DO*AUY3))
        A(4,1)=ETAH
```

$\Delta(4,2)=F 1$
$\Delta(4,3)=0.0 \mathrm{DO}$
$\mathrm{A}(4,4)=(\mathrm{U} 1 / \mathrm{B}) * \mathrm{AUX} 2$
$T(1)=0.0 \mathrm{DO}$
$T(2)=C 5 * 1 U X 4$
$T(3)=C 5 * A U X 2$
$T(4)=-(A L P / B) * U H *$ EDOT
C

RETURT

EED

```
    SUBROUTIIE PERFRM(R,HEIIT,ALPEA,D,AMAT,BHAT,Q,I,VO,BETA,
    1 U10,U O, BO,DFDRAG,IS,IF,PHI)
C
C**************************************************************************************
C
OMEETAT1OE RATIO IE
IMDEPEIDEIT CALCULATIOIS; BY I|TEGRATIOE OF THE SURFACE PRESSURES, ATD BY A *
COITROL VOLURE AHALYSIS USI省G THE BLASIUS HOMEETUM THEORER. A SUMMARY OF *
THE PERFORMAICE PARAMETERS ARE URITTEI TO THE DUTPUT FILE OUT.DAT. *
*
*** LATEST REVISIOI - 23 APR 1987 *** *
*** PARAKETER DESCRIPTIOI **** *
    ##PUT: *)
HEXIT - CHABHEL EXIT HALF WIDTH
ALPEA - VECTOR OF PAIEL ORIEITATIOI AIGLES
D - VECTOR OF PAIEL LEMGTES
OF % COMPOEEET ITDUCED VEIOCITIES
M, +
BMAT - MATRIX OF Y COMPOMEIT IEDUCED VELOCITIES *
Q - VECTOR COITIIIIIG THE SOURCE STREIGTES *
| - IUMBER OF PAIELS
vo - FREE-STREAM SPEED
BETA - AIGLE OF ATTACK
U1O - JET IHITIAL CEETERLIEE VELOCITY
UOO - IHITIAL UO COMPDIETT OF VELOCITY
BO - IPITIAL JET VELOCITY HILF-YIDTH
DFDRIG- PRESSURE DRAG ASSOCIATED WITH THE DIFFUSER
|S - PAEEL IIDEI OF TEE SHROUD IOSE START
MF - PAIEL IIDEX OF THE SHROUD TOSE FIIISH
ouTpuT:
PHI - THRUST \UGMEITATIOE AS COMPUTED BY THE HOMEHTUN TEEOREN
C
C**************************************************************************************
C
    IMPLICIT REAL*8(A-H,0-2)
    DIMEISIOI R(5),ALPHA(I),D(I), AMAT(I,N),BHAT(I,I),Q(I)
    PI=3.14159265DO
    ALP=DSQRT(DLOG(2.ODO))
        *** COMPUTE THE PRIMARY JET MOHENTUR FLUI
    RMJ=BO/ALP*DSQRT(PI)*(UOO*U1 0+0.5DO/DSQRT(2.ODO)*U10**2-
    1 O.5DO*VO*U1O)
        *** IETEGRATE THE SURFACE PRESSURES ***
        SUM3=0. ODO
        VOX=VO*DCOS(BETA)
        VOY=VO*DSII(BETA)
    DO IrMS,IF
        SUM1 =0. ODO
        SUH2=0.0DO
        DO J=1,I
            SUM1 =SUM1+IM&T(I, J)*Q(J)
            SUH2=SUM2+BMAT(I,J)*Q(J)
```

c
$10.5 \mathrm{DO} * \operatorname{DSQRT}(\mathrm{PI} / 2 . O D 0) * \mathrm{U1} * * 2 *$ $\operatorname{DERF}(\operatorname{DSQRT}(2.0 D 0) * E T A H)$) $3 \mathrm{VO} * \mathrm{~B} / \mathrm{ALP} *(E T A H * \mathrm{UO}+\mathrm{DSQRT}(\mathrm{PI}) / 2 . \mathrm{OD} 0 * \mathrm{U} 1 * \mathrm{DERF}(E T A H)$)
*** compute tee thrust augheitatiol ration usigg the
*** momeitum theorem aid surface pressure calculatiol

PEIMT=TGROSS /RMJ
PHISP $=1.0$ DO $+($ TAUX - DFDRAG) $/$ RMJ
*** compute the induced thrust from the momeitur theorem ***
TIMD=TGROSS-RMJ+DFDRAG

YRITE (21,10) RMJ, TGROSS, TAUX, TIID, DFDRIG, PHISP, PHIMT
FORMAT(//,' JET hOMEITUM $=$ ', F10.5,
1 ' EXITIIG MOMEITUA $=$ ', F10.5, $/$,
2 , induced thrust computed from surface pressures $=$ ', F10.5, $/$,
3, ITDUCED THRUST COMPUTED FROM MOHEITUM THEOREM = ',F10.5,/,
, pressure drag associated with tee diffuser $=$ ',F10.5, ,
4 , terust augheitatiol ratio from surface pressures $=$ ', Fio.5,/,
5 , thrust augheitation ratio from homeetuh theorem $=$ ', fio.5)

EHD DO
*** taux is the induced terust
TAUX $=\mathrm{SUM} 3$
$\mathrm{U}=\mathrm{R}=\mathrm{R}(1)$
$\mathrm{U}_{1}=\mathrm{R}(2)$
$P=R(3)$
$\mathrm{B}=\mathrm{R}(4)$
ETAB=ALP*BEXIT/B
*** COMPUTE TEE MOMEITUM FLUX EXITIIG FROM TEE EJECTOR

c
*** choose the homeitur theorem calculated value of phi

END DO

RETURI
EID

```
        SUBROUTIIE SURFVEI (YCOIT, IEMIT, ICP, YCP,D, AMAT, BMAT,Q,I,
        1 VO,BETA,SC,UEXT,MEXT,MLEI,STAG)
C
c...........................................................
C
THIS SUBROUTIIE COMPUTES THE SHROUD SURFACE VELOCITY FROM THE IIVISCID
SOLUTIOI FOR USE II THE BOUIDARY LAYER CALCULATIOM.
*** LATEST REVISIOI - 22 APRIL 1987 ****
*** PARAMETER DESCRIPTIOI ***
    I|PUT:
XCOIT - Z COORDIWATE OF THE COITROL STATIOI
XEXIT - X COORDIIATE OF THE SHROUD EXIT
XCP - VECTOR COITAI#IEG THE X COORDI#ATES OF THE COMTROL POI#TS *
YCP - VECTOR COHTAI#IEG THE Y COORDIMATES OF TEE CONTROL POIATS *
D - vector coltaiEI|g tHE panel leggtes
AMAT - MATRIX OF HORIZOHTAL I|DUCED VELOCITIES
BMAT - MATRIX OF VERTICAL ITDUCED VELOCITIES
Q - vECTOR COETAIEIIG THE SOURCE STREIGTES
I - EUMBER OF paIELS
vo - FREE-STREAM SPEED
BETA - AIGLE OF ATTACK
SC - VECTOR OF SURFACE COORDIIATES AT UHICH THE VELOCITIES ARE
CALCULATED. THE SURFICE COORDIMATES ARE IORMALIZED SUCH THAT THE *
                COITROL STATIOI LOCATION IS 1. THE ORIGIM IS TBE STAGMATIOY POIHT *
                IF & FREE-STREAM IS PRESEET AID TEE SEROUD TRAILIIG EDGE FDR
                STATIC OPERATIOI
    UEXT - VECTOR COITAIEIIG TEE SURFACE VELOCITIES
    IEXT - MUBER OF STATIONS AT WHICH THE VELOCITY IS CALCULATED *
    \LEI - LEMGTE OF THE SURFACE OVER UEICH THE THE VELOCITIES ARE CALCULATED *
    stag - logical variable set to true whem a stagmatiom poimt is present *
C
C
    IMPLICIT REAL*8(1-H,O-Z)
    LOGICAL STAG
    DIMEISIOI YCP(I),YCP(I),D(I),AMAT(IN,N),BMAT(I,I),Q(I)
    DIMETSIOI SC(100), UEXT(100)
    logICAL FLAG
    VOX=VO*DCOS(BETA)
    VOY=VO*DSII(BETA)
        *** FIED PAIEL IDDEX OF SHROUD TRAILIIG EDGE ***
        DO 10 I=I, 1, -1
        IF(XCP(I-1).LT.XEIIT) GOTO 20
    COITIIUE
    IS=I
    ISJ=TS
        *** FIID TEE PAIEL IIDEI OF THE COETRDL STATIOI ***
    FLAG=.FALSE.
    DO 30 I=IS,1, -1
        IF(XCP(I-1).GT. XCP(I)) FLAG=.TRUE.
        IF(FLAG.AID.XCP(I).GT. YCOET) GOTO 40
    COITIIUE
    IF=I+1
```

```
|FJ=I
K=0
DO 100 I=\S, IF,-1
    IF(I.EQ.IS) THEI
        K=K+1
    S=\EXIT- \CP(I)
        SC(1)=S
        X=XCP(I)
        Y=\ CP(I)
        SUH1 =O.ODO
        SUN2=0.ODO
        DO J=1,I
            SUM1 =SUM1+AMAT(I,J)*Q(J)
            SUR2=SUM2+BMAT(I,J)*Q(J)
        EID DO
        U=SUM1 +VOX
        V=SUM2+VOY
        UEXT(K)=DSQRT(U*U+V*V)
    ELSE
        S=S+D(I+1)/2.0DO+D(I)/2.000
            *** FILTER TEE VELOCITY DATA UHICE IS TAREI I# & REGIOI ***
            *** ADJACEET TO THE COBTROL STATIOI SI|GULARITY.
        x=\CP(I)
        Y=\CP(I)
        SUM1 =0.ODO
        SUM2=0.ODO
        DO J=1,I
            SUR1 =SUH1 + AMAT (I,J)*Q(J)
            SUR2=SUM2+BMAT}(I,J)*Q(J
        EID DO
        U=SUM1 +VOX
        V=SUM2+VOY
        UMOD=DSQRT(U*U+V*V)
        IF(S.LT.5.0) THE\
                    *** IMCLUDE THE LOCAL POIIT OILY IF TEE ***
                *** VELOCITY IS IICREASIIG ***
        IF(UMOD.GT.UEXT(K)) THEE
            K=K+1
            SC(R)=S
            UEXT(K)=UMOD
        EID IF
        ELSE
            K=R+1
            SC(K)=S
                UEYT(K)=UHOD
            EID IF
        EID IF
cortinue
        *** SEARCH FOR THE STAGMATIOI POI\T (MIMIMUN VELOCITY MODULUS) ***
UTIE=10. ODO
DO 105, I=1,R
```

```
        IF(UEXT(I).LT.UIII) TBEI
        UHI I=UEXT (I)
        L=I
            EID IF
105 COITIIUE
    IF(L.EQ.1) THEI
        STAG=.FALSE.
    ELSE
        STAG=.TRUE.
    EID IF
C
C *** CORRECT IF LOT ALL DATA IS FROM THE SAYE SIDE OF THE ***
C
C
IF(STAG) THEI
    TEST=(UEXT(L+2)-UEXT(L+1))/(UEXT(L+1)-UEXT(L))
    IF(TEST.GT.10.0) L=L+1
EED IF
C
C *** IORMALIZE SURFACE COORDIIATES SXIPPIMG OVER POIETS SUFFERI#G ***
C *** FROM SIMGULARITIES IEAR THE COETROL STATIOI (LAST THREE POIHTS) **
C
    IEFD=(K-2)
    IF(STAG) THEI
        SO= SC(L) - (SC(L+1)-SC(L))*UEXT(L)/(UEXT(L+1)-UEXT(L))
        SC(1)=0.ODO
        UEXT (1) =0.0DO
        EEXT=R-L
        |=1
        EISE
        SO= O.ODO
        IEXT=\EID
        K=0
    EHD IF
    YLEI=SC(IEMD)-SO
    DO 110 I=L, |E|D
        R=K+1
        SC(K)=(SC(I)-SO)/YLEE
        UEXT(K)=UEXT(I)
110 COITIIUE
        RETURI
    EID
```

```
    FU|Ction v(S,SD,y)
c
C*********************************************************************************
C function v computes the vertical componeit of velocity fron the viscous *
v computes the vermcal componemp of velocim fron the viscous *
C SOLUTIOR.
C *
C *** LATEST REVISIOT - 25 JAI 1987 * ** * *
*** PARAMETER DESCRIPTIOI *** *
C *** PARAKEIER DESCRIPITON ***
c InPUT:
s - vector comtaiming the values of the jet parameters *
sd - vector comtaimigg the values of tae derivatives of the jet *
Parameters *
y - Cartesiai coordilate (vertical distaIce from jet ceiterlime) *
    OUTPUT: *
v - vertical componemt of velocity *
c
C********************************************************************************
C
    IMPLICIT REAL*8(1-H,0-Z)
    DIMESSIOI S(4),SD(4)
C
    ALP=DSQRT(DLOG(2.ODO))
    PI=3.1415926DO
C
    vo=S(1)
    U1=S(2)
    P =S(3)
    B =S(4)
C
        UODOT=SD(1)
        U1DOT=SD(2)
        PDOT =SD(3)
        BDOT =SD(4)
C
        ETA=ALP*Y/B
        F=DSQRT(PI)/2.ODO*DERF(ETA)
        E=DEXP(-ETA**2)
C
        V=-B/ALP*(ETA*UODOT+F*U1DOT+U1/B*(F-ETA*E)*BDOT)
c
        RETURI
        EID
```


B.3.2 Dual-Jet Library TWINLIB

c
C**
C Subroutile derivi computes the derivatives of the jet paraheters withi! * c the viscous-tiviscid matceirg region.

```
*** LATEST REVISIOI - 23 APR 1987 *** *
```

*** PARAMETER DESCRIPTIOI *** *
ITPUT:
*
$\begin{array}{lll}\mathrm{C} M & \text { - NUMBER OF JET PARAMETERS } \\ \mathrm{CX} & \text { - DISTAICE FROM THE JET ORIGII }\end{array}$
$\begin{array}{ll}C \mathrm{H} & \text { - MUMBER OF JET PARAMETERS } \\ \mathrm{CX} & \text { - DISTAICE FROM THE JET ORIGII }\end{array}$
C S - VECTOR COITAIIIIG THE JET PARARETERS UO,U1,P, A,B,Y1,Y1DOT *
C RESPECTIVELY *
C *
C OUTPUT: *
C SD - DERIVATIVES OF THE JET PARAMETERS *
C
C
IMPLICIT REAL*8(A-H, O-Z)
DIMEMSIOI $S(7), S D(7), W(2,2), \operatorname{RHS}(2), C(2,2)$
COMMOI UO, U1, P, A, B, Y1, ALP
C
C *** DECODE TEE S ARRAY SO TEE PARAMETERS MAY BE SEIT II COMHOY ***
C
$U 0=S(1)$
$\mathrm{U} 1=\mathrm{S}$ (2)
$\mathrm{P}=\mathrm{S}$ (3)
$\Delta=S$ (4)
$B=S(5)$
$Y 1=S(6)$
DY1DY=S(7)
C
C *** COMPUTE TEE CURVITURE OF THE JET CEITERLIIE ***
C
CALL FORCE1 (X,DY1DX, UODOT, ADOT,D2Y1DX)
C
C
C
C
$C O I=1 . O D O-D L O G(2 . O D O) / 2.0 D O$
$\mathrm{RE}=0.0283 \mathrm{D} 0$
RHU=RK*U1*B
C
C *** COMPUTE TEE MATRIX EIEMEITS AID RIGHT HAID SIDE
C
D1UO $=2.0 \mathrm{DO} * \mathrm{U} 1$
$C(1,1)=\mathrm{UO}+4.0 \mathrm{DO} / 3.0 \mathrm{DO} * \mathrm{U} 1+0.5 \mathrm{DO} * \mathrm{~A}$
D1A $=\mathrm{U} 1-0.5 \mathrm{DO} * \mathrm{COI} * \mathrm{~A}$
$C(1,2)=1 . O D O / B *(U 1 *(U O+2 . O D O / 3 . O D O * U 1+0.5 D 0 * 1)-0.25 D O * C O H * A * * 2)$
$T 1=0.000$
RES (1) $=T 1-(D 1 U 0 * U O D O T+D 1 \& * A D O T)$
C
D2UO $=2 . O D O * U 1 *(2 . O D O * U O+U 1+A)-0.25 D O * A * * 2$
$C(2,1)=2.0 D O * U O *(U 0+2 . O D O * U 1+1)+U 1 *(1.6 D O * U 1+2 . O D O * 1)+0.5 D O * A * 2$
D2A $=U 1 *(U 1+2.0 D O * U O+1)-C O H * A *(U 0+0.5 D O * 1)-0.125 D O * \& * 2$
$C(2,2)=1 . O D O / B *(U 1 * * 2 *(2 . O D O * U 0+8.0 D 0 / 15.0 D O * U 1+1)+$

```
    1 2.ODO*UO*U1*(UO+1)+
    2 O.5DO*A**2*(-COI*(UO+O.5DO*A)+U1))
    T2=-RNU*(ILP/B)**2*(16.ODO/15.ODO*U1**2+1.ODO/3.ODO*L**2)
    RHS (2) =T2-(D2UO*UODOT+D2A*ADOT)
        SD(1)=UODOT
        SD(2)=RHS (1)
        SD(3)=-UO*UODOT
        SD(4)=ADOT
        SD(5)=RHS (2)
        SD(6)=DY1DX
        SD(7)=D2Y1DX
        RETURI
        END
```

C


```
COMST=ALP/B
C1=2.ODO*COIST*U1
U1SQ=U1**2
AD2=4/2.ODO
YU=H
HIET=IIT(4.ODO*H/B)
IF(DMOD(DFLOAT(EI|T),2.ODO).GT.0.1DO) II|T=|I|T+1
DY=(YU-YL)/DFLOAT(IIIT)
            *** INITIALIZE TEMPORARY STORAGE SPACE TO ZERO
HVEC=35
DO I=1,IVEC
    SUN(I) = O.ODO
E#D DO
Y=YL
DO I=O,MIIT
                                    *** DEFI|E REPEATEDLY USED TERMS
```

c
C
*** IUITIALIZE TEMPORARY STORAGE SPACE TO ZERO

IVEC $=35$

$$
\operatorname{SUM}(I)=0.000
$$

EED DO

```
    *** EITER THE IETEGRATIO| LOOP ***
```

```
    *** EITER THE IETEGRATIO| LOOP ***
```

```
    ARG1=C0IST* (Y+Y1)
    ARG2=C0IST*(Y-Y1)
    T1=DTANH(ARG1)
    T2=DTAIH(ARG2)
    S1SQ=1.ODO-T1**2
    S2SQ=1.ODO-T2**2
    T1S1SQ=T1*S1SQ
```

```
    T2S2SQ=T2*S2SQ
    G1=S1SQ*(3.0DO*S1SQ-2.ODO)
    G2=S2SQ*(3.ODO*S2SQ-2.ODO)
    Q1=DLOG(DCOSE(ARG1))
    Q2=DLOG(DCOSH(ARG2))
    SUM1 =T1+T2
    SUM2=S1SQ+S2SQ
    SUM3=T1S1SQ+T2S2SQ
    SUM4=ARG1*S1SQ+ARG2*S2SQ
C
C *** COMPUTE VELOCITY AID DERIVATIVES
U=U0+AD2*(T1-T2)+U1*SUM2
    DUDY=-COIST*(AD2*(-S1SQ+S2SQ)+2.ODO*U1*SUR3)
    D2UDY2=-C01ST**2*(A*)(T1S1SQ-T2S2Sq)+
                            2.ODO*U1*(G1+G2))
    *** COMPUTE THE COEFFICIEUTS OF THE DERIVATIVES OF THE JET
        ***
        *** PARAMETERS
    ***
    FUO=U-ETA/COIST*DUDY
    FU1 =SUM2*U-(T1 +T2)/COIST*DUDY
    FP =1.ODO
    FA =0.5DO*(T1-T2)*U-0.5DO/COEST* (Q1-Q2)*DUDY
    FB =1.ODO/B*(AD2*(-ARG1*S1SQ+ARG2*S2SQ)+
    2.ODO*U1*(ARG1*T1S1SQ+ARG2*T2S2SQ))*U-
    1.ODO/ALP*(AD2*(-ARG1 *T1 +Q1+1RG2*T2-Q2) +
            U1 * (-SUN4+SUM1)) * DUDY
    FY1=ALP/B* (AD2*SUM2+
        2.ODO*U1*(-T1S1SQ+T2S2SQ))*U-
        (\triangleD2*SUM1+U1*(S1SQ-S2SQ))*DUDY
    TAU=RMU*DUDY
    IF(Y.EQ.YB) TAU=O.ODO
        *** ENTER & LOOP TO CYCLE TEROUGH THE DIFFEREIT WEIGHTIMG ***
        *** FUSCTIOMS
    II=5
    DO }I=0,
    IP1 = II +1
    IF(IP1.GT.5) IP1=IP1-5
    IP2=II +2
    IF(IP2.GT.5) IP2=IP2-5
    IP3=II+3
    IF(IP3.GT.5) IP3=IP3-5
    IP4=II+4
    IF(IP4.GT.5) IP4xIP4-5
    IF(I.EQ.0) THET
        UEIGET=FP
        DUTDY=0.ODO
    EID IF
    IF(I.EQ.II) THEI
        UEIGHT=FUO/U1
        DWTDY=(-ETA/COEST*D2UDY2)/U1
    EID IF
    IF(1.EQ.IP1) THEI
        WEIGET=FU1/U1
        DUTDY=(-2.ODO*COIST*SUM3*U-
        1. ODO/COIS T * SUR1 * D2UDY2)/U1
    EID IF
    IF(I.EQ.IP2) THEI
```

```
            UEIGHT=FB/U1SQ
            DWTDY=(COIST/B*(AD2* (-S1SQ*(1.ODO-2.ODO*ARG1*T1) +
                                    S2SQ*(1.ODO-2.ODO*ARG2*T2))+
            2.ODO*U1*(SUM3+ARG1*G1 + IRG2*G2))*U-
            1.0D0/ALP*(AD2*(-ARG1*T1 +Q1 + ARG2*T2-Q2) +
            U1*(-SUM4+SUM1)) *D2UDY2)/U1SQ
        EID IF
        IF(I.EQ.IP3) THEI
            WEIGET=FY1/U1SQ
            DUTDY= (-COHST**2* (A*SUN3+
                                    2.OD0*U1*(G1-G2))*U-
            (AD2*SUM1+U1*(S1SQ-S2SQ))*D2UDY2)/U1SQ
        EID IF
        IF(E.EQ.IP4) THEI
            HEIGBT=FA/U1
            DWTDY=(0.5DO*CO#ST*(S1SQ-S2SQ)*U-
            0.5DO/COEST*(Q1-Q2)*D2UDY2)/U1
        EID IF
C
C
C
            *** Loop to fitm tee values of all of tee itmegramds
        IID=I*7
        DO J=1,6
            IF(J.EQ.1) F=FUO
            IF(J.EQ.2) F=FU1
            IF(J.EQ.3) F=FP
            IF(J.EQ.4) F=FB
            IF(J.EQ.5) F=FY1
            IF(J.EQ.6) F=F&
            D(I#D+J)=F*WEIGHT
            EMD DO
            D(IID+7) =-TAU* DUTDY
        END DO
            *** SET THE SIMPSOI'S RULE IETEGRATIOI WEIGHTIIG FACTORS ***
    R=2.000
    IF(DKOD(DFLOAT(I),2.ODO).GT.O.1DO) R=4.ODO
    IF(I.EQ.O.OR.I.EQ.IIIT) R=1.ODO
    *** FIMD COITRIBUTIOES TO THE IETEGRALS
    ***
    DO J=1,IVEC
    Sunt (J) =SUR(J)+R*D(J)
    EID DO
    *** I#CREMETT Y ***
    Y=Y+DY
END DO
    *** STORE APPROXIMATED I|TEGRALS ***
FACT=DY/3.ODO
DO }\boldsymbol{I}=0,
        |P1=|+1
    IMD=I*7
    DO I=1,6
        C(IP1,I) =SUH (I|D+I)*FACT
    EID DO
```

```
        RGS (IP1)=SUR(IID+7)*FACT
        EID DO
C
C
C
C
C
C
        SD(1)=RHS (1)
        SD(2)=RHS (2)
        SD(3)=RHS (3)
        SD(4)=RHS (6)
        SD(5)=RHS (4)
        SD(6)=RHS (5)
        SD(7)=SD(3)*H
C
C
C
C
200
C
```

```
    C(6,1) =-ETA/COIST
    C(6,2) =- (T1+T2)/C0IST
    C(6,3)=0.000
    C(6,4)=-1.ODO/\triangleLP*(AD2* (-\triangleRG1*T1+Q1+&RG2*T2-Q2)*
    1 U1* (-ARG1*S1SQ-ARG2*S2SQ+T1+T2))
    C(6,5) =- (1D2*(T1+T2) +U1*(S1SQ-S2SQ))
    C(6,6) =-0.5DO/COIST* (Q1-Q2)
    RHS (6) =HDOT*U
    *** SOLVE THE LIEEAR SYSTEM FOR THE DERIVATIVES OF THE JET PARAMETERS**
        D1=0.0DO
        CALL LIMV3F(C,RBS,2,6,6,D1,D2,H,IER)
        IF(IER.EQ.130) THE|
        URITE(3,107)
        FORMAT(' ERROR I| DERIV2: LIIV3F FOUID \ SIMGULAR MATRIX ')
        IERROR=1
        GOTO 200
        ETD IF
        DET=D1*(2.ODO)**D2
        *** LOAD THE SD VECTOR YITH TBE DERIVATIVES OF THE JET PARAMETERS ***
        IERROR=0
        RETURI
        *** Oll ERROR COIDITIOI, ZERO THE JET DERIVATIVES
        DO I=1,6
        SD(I) =0.0DO
    E|D DO
    RETURI
    EID
```

```
        SUBROUIIIE DUOBOD(XJ,YJ,DY1DXO,Y1CS, HJLS,YJLF,IJUS, IJUF,
        1
C
C
C SUBROUTIIE DUOBOD GEIERATES THE COORDIIATES OF TEE EJECTOR SEROUD FOR
C THE DUAL JET EJECTOR. THE SUBROUTIEE READS DATA FOR THE JET TRAJECTORY
C CONTAIIED I| LOGIGAL UEIT 20 (FILE JETCL.DAT).
    *** LATEST REVISIOI - 23 APR 1987 ***
    *** PARAMETER DESCRIPTIOI ***
    I#PUT:
        - X COORDIIATE OF THE JET mOZZLE
    C YJ - Y COORDIIATE OF TEE JET IOZZLE
C DY1DXO - IHITIAL JET SLOPE
    OUTPUT:
C Y1CS - Y COORDIIATE OF TEE JET CEHTERIIIE AT THE COMTROL STATIOX *
C HJLS - IDDEX OF THE START OF THE JET LONER SIDE BOUNDARY *
C NJLF - IMDEX OF THE FIIISH OF THE JET LOWER SIDE BOUHDARY *
C HJUS - ITDEX OF THE START OF THE JET UPPER SIDE BOUIDARY *
C HJUF - IRDEX OF THE FIMISE OF THE JET UPPER SIDE BOUIDARY *
C NS - IBDEX OF THE START OF THE EJECTOR SHROUD IOSE *
C NF - ImDEX OF THE FIMISB OF THE EJECTOR SHROUD MOSE *
C IER - ERROR PARAMETER 1 FOR ERROR COIDITIOI O FOR IORMAL EXECUTIOI *
C
C
    IMPLICIT REAL*8(A-B,0-Z)
    DIMERSIOI XCL(100), YCL(100),SPLI(300)
    DIMEYSIOI XTMP(300)
        *** DEFIIE PONER-LAW STRETCEIIG FUICTIOI
        ***
    COORD(I,SF,XO,II)=((X1-XO)*SF** DFLOAT(I)-(XI-SF*YO))/(SF-1.ODO)
    RAD(DEG)=DEG/180.0DO*PI
C
10
C
C
C
    REWIID 20
    DO I=1,100
        READ(20,*,EMD=15) YCL(I),YCL(I)
    EMD DO
    cortimue
    *** EITRAPOLATE TO GET OLE MORE POI|T ***
    I=I -:
    DELX=5.ODO
    DYDX=(YCL(I)-YCL(I-1))/(YCL(I)-XCL(I-1))
    XCL(I+1) = XCL (I) +DELY
    YCL.(I+1)=YCL(I) +DYDX*DELX
    MCL=\+1
```

```
C
c
C
C
C
C
    I=YCL(ICL-1)+1.ODO
    TOL=1.D-4
    DO I=1,100
        CALL I|TRP(X, YCL, YCL, FCL ,SPLI, ICL-1 ,Y1,DY1DY,D2Y1DX,IER)
        IF(IER.ME.O) THEI
            URITE(3,5) IER,Y
5
    1
        FORMAT(' ERROR II DUOBOD: IMTRP RETURIED UITH IER = ',I3,
        ,X=,,F10.5)
            IER=1
            RETURE
        END IF
        YB=DABS (1.ODO-Y1) +DABS (HH+(X-YJ)*SLPJET)
        RES =0.8DO-YB
        IF(I.EQ.1) THET
            W=1.ODO
        ELSE
            W=- (Y-YOLD)/(RES-RESOLD)
        EID IF
        XOLD=X
        RESOLD=RES
        X=X+M*RES
        IF(DABS(RES).LTT.TOL) GOTO 7
    EID DO
    COITIIUE
    xCS=x
    IF(XCS.LT.1.ODO) THEI
        WRITE(3,13)
        FORMAT(' ERROR II DUOBOD: yCS WAS LESS THAI 1.0')
        IER=1
        RETURI
    EED IF
    CALL IITRP(XCS, XCL, YCL, ICL,SPLI, YCL-1,Y1CS,DY1DY,D2Y1DX,IER)
    IF(IER.ME.O) THEM
        URITE(3,5) IER,X
        IER=1
        REIURI
    EHD IF
    YLWR=Y1CS-(HH+(ICS-XJ)*SLPJET)
    YUPP=Y1CS+(HB+(ICS-IJ)*SLPJET)
    SLPCS=DY1DY
C
C *** GE|ERATE AED TEMPORARILY STORE THE I COORDIEATES ***
C *** FOR THE JET BOUMDARY
    DIST=(ICS-IJ)/2.ODO
    SF=1.5DO
    XO=\J
    XI= X O +DYO
    I=I#T(DLOG(DIST/DYO*(SF-1.ODO)+1.0DO)/DLOG(SF))+1
    K=0
    IF(I.LE.5) THEI
        DO I=1,20
        F=DIST-DYO*(SF**|-1.ODO)/(SF-1.ODD)
        DF=-DYO*((DFLOAT(I)*SF**(M-1)*(SF-1.ODO)-(SF**I-1.ODO))/
```

$S F=S F-F / D F$
IF(DABS(F).LT.TOL) GOTO 9
EID DO
COETITUE
DO $\mathrm{I}=0$, I
$\mathrm{K}=\mathrm{K}+1$
$\operatorname{ITMP}(K)=\operatorname{COORD}(I, S F, \mathbf{Y} \mathbf{O}, \mathbf{1} 1)$
EED DO
$10=1 \mathrm{CS}$
$\mathrm{X} 1=\mathrm{X} 0-\mathrm{DX} 0$
DO $I=1,0,-1$
$\mathbf{K}=\mathbf{K}+1$
$\mathbf{I M P}(\mathbf{X})=\operatorname{COORD}(\mathrm{I}, \mathrm{SF}, \mathbf{X} 0, \mathbf{X} 1)$
ETD DO
HJET=K
ELSE
DO $I=0,5$
$\mathbf{K}=\mathbf{K}+1$
$X \operatorname{TMP}(K)=\operatorname{COORD}(I, S F, X O, X 1)$
EID DO
$\mathrm{x} 0=\mathrm{xCS}$
$\mathrm{X} 1=\mathrm{XO}-\mathrm{DXO}$
$\mathbf{X P}=\operatorname{COORD}(5, S F, \mathbf{X} 0, \mathbf{X} 1)$
DIST $=\mathbf{X P}-\mathbf{Y T M P (K)}$
DX=0.3DO
MRID=IIT(DIST/DY)
IF(IMID.GT.0) DX=DIST/DFLOAT(IMID)
DO $I=2$, MHID
$\mathrm{K}=\mathrm{K}+1$
$X \operatorname{TMP}(K)=X \operatorname{TMP}(X-1)+D X$
EDD DO
DO $I=5,0,-1$
$\mathbf{R}=\mathbf{K}+1$
$\mathbf{X T M P}(\mathrm{K})=\operatorname{COORD}(\mathrm{I}, \mathrm{SF}, \mathbf{X} 0, \mathbf{X} 1)$
EID DO

- JET=K

EHD IF
C
C *** GEEERATE UP TO THE LOMER COUTROL STATIOI ***
C

C
$L=0$
$\mathrm{XO}=0.0 \mathrm{DO}$
$X_{1}=\mathbf{x} 0-\mathrm{DX} 1$
$\mathrm{SF}=1$. 6 D 0
DIST $=20.0 \mathrm{DO}$
IPTS $=\mathbb{I I T}($ DLOG $((S F-1.0 D 0) * D I S T / D X 1+1 . O D O) / D L O G(S F))$
C
$Y=0.0 \mathrm{DO}$
$\mathrm{VH}=0.0 \mathrm{DO}$
DO $I=\mathrm{IPTS}, 0,-1$
$\mathbf{X}=\operatorname{COORD}(\mathrm{I}, \mathrm{SF}, \mathbf{X} 0, \mathrm{X} 1)$
$\mathrm{L}=\mathrm{L}+1$
URITE $(1,10) X, Y$, VI
END DO
C
SF=1.2D0
A=DATAI(SLPJET)-DATAI(SLPCS)
$\mathrm{A} \mathrm{HG}_{\mathrm{F}}=\mathrm{PI} / 2$. ODO-A
$\mathrm{R}=\mathrm{YLUR} /(1.0 \mathrm{DO}+\mathrm{DSII}(1 \mid G)$)
$\mathbf{X T}=\operatorname{COORD}(\mathbf{T I}, \mathrm{SF}, \mathbf{X O}, \mathbf{1 1})$
DIST= $\mathbf{x T}$-O.ODO
IF(DIST.LT.O.ODO) TBEI

ERD IF
$\mathrm{I}=\mathrm{HI} \mathrm{IT}$ (DIST/DX1)
IF(I.GT.0) DX=DIST/DFLOAT(I)
D $\mathrm{I}=1$, I
$\mathrm{x}=\mathrm{x}+\mathrm{DX}$
$L=I+1$
WRITE $(1,10) \mathrm{X}, \mathrm{Y}, \mathrm{VI}$
EID DO
C
DO $\mathrm{I}=\mathbf{1 1}-1,1,-1$
$\mathrm{Y}=\operatorname{COORD}(\mathrm{I}, \mathrm{SF}, \mathbf{1 0}, \mathrm{X1})$
$\mathrm{L}=\mathrm{L}+1$
$\operatorname{WRITE}(1,10) X, Y, V I$
EID DO
C
C
c
C
*** gererate tee poithts for the lower coitrol station ***
A=DATAI (SLPJET)-DATAH(SLPCS)
1 IIG=PI/2.ODO-A
R=YLUR/(1.ODO+DSIT(IIG))
$\mathbf{Y C = Y C S}-\mathrm{R} * \mathrm{DCOS}(\mathrm{IIIG})$
$Y C=R$
C
DTHO $=$ DYO/R
THETAO=-PI/2.ODO
THETA1=THETA0 0 DTHO
DTH $=$ PI $/ 2 . O D 0-1 / 2.0 D O$
$\mathrm{SF}=0.5 \mathrm{DO} * \mathrm{R}+0.95 \mathrm{DO}$
$I=I I T T(D L O G((S F-1 . O D O) * D T H / D T H O+1 . O D O) / D L O G(S F))$
DC $I=1,20$
F=DTH-DTHO*(SF**I-1.ODO)/(SF-1.ODO)
DF=-DTHO*((DFLOAT(I)*SF**(I-1)*(SF-1.ODO)-(SF**I-1.ODO))/
$1 \quad(\mathrm{SF}-1.0 \mathrm{DO}) * * 2)$
SF=SF-F/DF
IF(DABS(F).LT.TOL) GOTO 6
EID DO
coltinue
DO $I=0, I$
THETA $=$ COORD (I, SF, THETAO, THETA1)
$\mathbf{x}=\mathrm{YC}+\mathrm{R} * \mathrm{DCOS}$ (THETA)
$\mathrm{Y}=\mathrm{YC}+\mathrm{R} * \mathrm{DS}$ I (TEETI)
IF(I.EQ.I) THEI
THIEKT=THETA $+($ THETA-COORD (I-1, SF, TBETAO, THETA1))
ELSE
THIEIT $=$ COORD ($1+1, \mathrm{SF}$, THETIO, THETA1 $)$
EID IF
TBIID=(TBETA+TEIEXT)/2.ODO
VI=DCOS (THIID)
L=I +1
URITE(1,10) X,Y,VI
EED DO

C
THETAO=AIG
thetal=thetao-dtho
DO $\mathrm{I}=\mathrm{I}-1,1,-1$
theta $=$ COORD (I, SF, THETAO, THETA1)
$\mathbf{X}=\mathbf{Y C}+\mathrm{R} * \mathrm{DCOS}($ TRETL)
$Y=Y C+R * D S I I(T H E T A)$
thiExt $=\operatorname{COORD}(\mathrm{I}-1, \mathrm{SF}$, THETAO,THETA1)
THMID=(THETA+THEEXT) $/ 2.0 D 0$
VII=DCOS (THIID)
$\mathrm{L}=\mathrm{L}+1$
URITE(1,10) $\mathbf{Y}, \mathrm{Y}, \mathrm{VI}$
EIID DO
IJLS $=\mathrm{L}+1$
c
c
c
DO $\mathrm{I}=\mathrm{BJET}, \mathbf{2 , - 1}$
$X=X \operatorname{TMP}(I)$
CALL ITTRP(X,XCL, YCL, ICL , SPLE, YCL-1, Y1, DY1DX, D2Y1DX, IER)
If (IER.IE.0) TBEI
urite $(3,5)$ IER, x
$\mathrm{IER}=1$
returim
EID IF
$\mathbf{Y}=\mathbf{Y}_{1}-(\mathrm{BH}+(\mathbf{X}-\mathbf{Y J})$ *SLPJET $)$
YEEXT $=$ YTHP $(1-1)$
YMID $=(X+X I E X T) / 2.0 D O$
VI=DSII(DATAI(SLPJET)-DATAI (DY1DX))
$\mathrm{L}=\mathrm{L}+1$
URITE(1,10) $\mathbf{X}, \mathrm{Y}, \mathrm{VII}$
EMD DO
HJLF $=\mathrm{L}+1$
C
-CIRC=4
$R R=H B / D C O S(R A D(12 . O D O))$
$\mathrm{XC}=\mathrm{YJ}+\mathrm{RR} * \operatorname{DSI}$ ($\mathrm{RAD}(12.0 \mathrm{D} 0)$)
$\mathrm{YC}=\mathrm{Y} \mathrm{J}$
DELTH=PI-2. ODO*RAD (12.ODO)
DTH=DELTE/DFLOAT(ICIRC)
THETA $=-\mathrm{PI} / 2$. ODO-RAD (12.ODO) +DY 1 DXO
VII=O.ODO
DO I=0, ICIRC-1
$\mathrm{X}=\mathrm{XC}+\mathrm{RR}+\mathrm{DCOS}(\mathrm{THETA})$
$\mathrm{Y}=\mathrm{YC}+\mathrm{RR} * \mathrm{DSII}$ (THETA)
$L=L+1$
URITE $(1,10) \quad X, Y, V I$
theta=theta-dth
EIID DO
c

IJUS=L
DO I=1, IJET-1
$1=x \operatorname{TMP(I)}$
IF(I.EQ.1) THEI $\mathrm{Y}=\mathrm{YJ}$
ELSE
CALL IITRP(X, XCL , YCL, ICL , SPLI, ICL-1, Y1, DY1DX, D2Y1DX,IER)
IF(IER.EE.0) TBEI
WRITE (3,5) IER, X
IER=1

```
                RETURI
            END IF
        EID IF
        Y=Y1+(HE+(X-XJ)*SLPJET)
        Y YEXT=YTMP(I +1)
        YMID =(Y+Y|EXT)/2.ODO
        VI=DSIM(DATAI(SLPJET)+DATAI(DY1DX))
        L=L+1
        urite(1,10) 1,y,VI
    EED DO
    IJUF=L
    c
c
C
C
    DTHO=DXO/R
THETAO=\IG
THETA1=THETAO+DTHO
DTE=PI/2.ODO-1/2.ODO
SF=0.5DO*R+0.95DO
Y=HITT(DLOG((SF-1.ODO)*DTH/DTHO+1.ODO)/DLOG(SF))
DO I=1,20
    F=DTH-DTHO*(SF**|-1.ODO)/(SF-1.ODO)
    DF=-DTHO*((DFLOAT(1)*SF**(N-1)*(SF-1.ODO)-(SF**N-1.ODO))/
    1
    SF=SF-F/DF
    IF(DABS(F).LT.TOL) GOTO 8
    EmD DO
    8 Coltimue
    DO I=0,!
        THETA=COORD(I,SF,THETAO,THETA1)
        Y=YC+R*DCOS(THETA)
        Y=YC+R*DSII(THETA)
        IF(I.EQ.I) THEI
            THIEXT =THETA +(TEETA-COORD(I-1,SF,THET10,TRETA1))
        ELSE
            THIEXT=COORD(I+1,SF,THETAO,THETA1)
        EID IF
        TEHID=(TEETA+THYEXT)/2.ODO
    VI=DC0S(THMID)
        L=L+1
        wRITE (1,10) X,Y,VI
            EID DO
    c
        THETAO=PI/2.ODO
        THETA1=THETAO-DTHO
DO I=|-1,1,-1
    THETA=COORD(I,SF,THETAO,THETA1)
    l=\C+R*DCOS(TEETA)
    Y=YC+R*DSIM(THETA)
    THIEXT=COORD(I-1,SF,TRETAO,THETA1)
    THHID=(THETA+THEEXT)/2.ODO
    VI=DCOS(THMID)
    L=L+1
    uRITE(1,10) 1,Y,VI
```

EID DO
*** GEDERATE POIETS OI THE UPPER CHAMMEL HALL ***
$\mathbf{x}=\mathbf{Y C}$
$\mathbf{x} 1=\mathbf{1} 0-\mathrm{DIO}$
$Y=2$. ODO
$V E=0.0 \mathrm{DO}$
SF=1.2D0
DIST $=\mathbf{X O - 1 . O D O}$
HE=IIIT(DLDG(DX1/DYO)/DLOG(SF))
$I=I Y T(D L O G(D I S T / D X O *(S F-1 . O D O)+1 . O D O) / D L O G(S F))+1$
$\mathrm{K}=0$
IF(I.LE.IE) THEI
DO $I=1,20$
F=DIST-DXO* (SF**H-1.ODO)/(SF-1.ODO)
DF $=-\mathrm{DYO}=((\mathrm{DFLOAT}(\boldsymbol{H}) * S F * *(\boldsymbol{H}-1) *(S F-1 . O D O)-(S F * * \mathbb{I}-1 . O D O)) /$
(SF-1.ODO)**2)
IF(DABS (DF).LT.1.D-6) THEI
$\mathrm{SF}=\mathrm{SF}-\mathrm{F}$
ELSE
$S F=S F-F / D F$
EID IF
IF(DABS(F).LT.TOL) GOTO 11
EDD DO
COHTIIUE
DO $I=0, \mathrm{I}-1$
$\mathrm{X}=\mathrm{COORD}(\mathrm{I}, \mathrm{SF}, \mathrm{XO}, \mathrm{X} 1)$
$\mathrm{L}=\mathrm{L}+1$
URITE $(1,10) \quad \mathbf{Y}, Y, V I$
EID DO
ELSE
DO I $=0$, II
$\mathbf{X}=\operatorname{COORD}(\mathrm{I}, \mathrm{SF}, \mathrm{X} \bigcirc, \mathrm{X} 1)$
$\mathrm{L}=\mathrm{L}+1$
URITE $(1,10) \mathbf{X}, Y, V I$
EHD DO
DIS T=Y-1. ODO
E=WIMT(DIST/DY1)
IF(I.IE.O) DX=DIST/DFLOAT(I)
DO $I=1, I-1$
$\mathbf{Y}=\mathbf{Y}-\mathrm{DX}$
$\mathrm{L}=\mathrm{L}+1$
$\operatorname{WRITE}(1,10) X, Y, V Y$

ElD DO

EED IF
*** GEEERATE THE POIETS FOR THE BODY MOSE ***

- C CIRC=12
$\mathrm{XC}=1$. ODO
$Y C=3$. 0 DD 0
R=1.ODO
DTH=PI/DFLOAT (ICIRC)
THETA=3.ODO/2.ODO*PI
$V I=0.0 \mathrm{DO}$
பS=L+1
DO $110 \mathrm{I}=0$, ICIRC
$\mathrm{X}=\mathrm{XC}+\mathrm{R} * \mathrm{DCOS}$ (THETA)
$Y=Y C+R * D S I Y(T E E T A)$
$\mathrm{L}=\mathrm{L}+1$

```
        URITE(1,10) X,Y,VI
        TBETA=TBETA-DTH
    110 COMTIIUE
    C
        |F=1-1
C
        DY=0.2DO
        SF=1.2DO
        1O=1
        Y1=XO+DX
        DIST=\CS-1
        I=MIIT(DLOG(DIST/DX*(SF-1.ODO) +1.ODO)/DLOG(SF))
        DO I=1,I
            X=COORD(I,SF,YO,X1)
            L=L+1
            WRITE(1,10) X,Y,VI
        EED DO
    C
        DY=COORD(I,SF,XO,X1)-COORD(I-1,SF,XO,\1)
        YO=Y-DY
        X1=X
        SF=1.6D0
        DIST=20.0D0-10
        F=HIIT(DLOG(DIST/DX*(SF-1.ODO)+1.ODO)/DLOG(SF))
        DO I=2,I
        I=COORD(I,SF,10,X1)
        L=L+1
        URITE(1,10) X,Y,VM
        ETD DO
    C
        IER=0
        RETURI
        EED
```

SUBROUTIDE FORCE1 (X,DY1DX, UODOT, ADOT,D2Y1DY)
C

C
I RPLICIT REAL* 8 (A-H, O-Z)
COMMOI U0, U1, $\mathrm{P}, \mathrm{A}, \mathrm{B}, \mathrm{Y} 1, \mathrm{ALP}$
EXTERHAL USQ
*** IIITIALIZE IETEGRATIOI PARAMETERS

ETAMAX=2.4DO
$Y L=Y 1-E T A M A X * B / A L P$
$Y U=Y 1+E T A M A X * B / A L P$ HITT $=20$

```
COMPUTE PRIMARY JET MOMEITUM
```

RMJ $=$ SIMS (USQ , YL , YU , IIITI)
*** FIID TEE VELOCITY COMPOIESTS OI EITBER SIDE OF TBE JET ***
CALI UPPVLC(X,UU,UUDOT)
CALL LURVLC(\mathbf{X}, UL, ULDOT)
** COMPUTE THE PRESSURE JUMP ACROSS TEE JET
DELP $=0.5 D O *$ (UL*UL-UU*UU)
** COMPUTE THE CURVATURE OF TEE JET CEITERLIIE
**

RKAP=-DELP/RHJ
C
UODOT=UUDOT
ADOT=ULDOT-UUDOT
*** COMPUTE THE SECOID DERIVATIVE OF TEE JET CEITERLIIE
$\mathrm{D} 2 \mathrm{Y} 1 \mathrm{DX}=\mathrm{RK} 1 \mathrm{P} *(1+\mathrm{DY} 1 \mathrm{DX} * * 2) * * 1.5 \mathrm{DO}$
C
RETURI
EID

```
        SUBROUTIEE FSTRM(U10,BO,U00,10,GAMGIL,VO)
C
C************************************************************************************
C
C SUBROUTIIE FSTRM COMPUTES THE VILUE OF THE FREE STREAM VELOCITY GIVEI
C tHE parameter gamal ajd tee values of tee jet paraheters.
C
C *** LATEST REVISIOY - 23 APR 1987***
C
C *** PARAMETER DESCRIPTIOI ****
C I#PUT:
C U10 - IMITIAL JET EXCESS VELOCITY
C BO - IIITIAL JET HALF-HIDIE
C AO - INITIAL ASYMMETRY FACTOR
C GAMMA - FreE STREAM SPEED PARAMETER
C
C
C vO - FREE STREAM VELOCITY
C
C*******************************************************************#####************
C
    IMPLICIT REAL*8(1-H,0-Z )
    COMMOI UO,U1,P, A,B,Y1,ALP
            *** COMPUTE THE PRIMARY JET MOMEITUM FLUX ***
        RMJ=2.ODO*BO/ALP* (2.ODO/3.ODO*U1O**2+2.ODO*U0C*U10+U1O*AO-
    1 AO**2/4.ODO)
C
C *** CORPUTE TEE FREE STREAM VELOCITY ***
C
    VO=GAMMA*DSQRT(RMJ/4.ODO)
C
    RETURI
    EID
```

```
        SUBROUTIHE GETPRM(XJ,YJ,Y1DOTO, XEXIT,DIFSLP, XDIFF,GAYMA,
        1 U1O,BO,DUMP1)
C
C**************************************************************************************
C
C THIS SUBROUTIIE READS IIPUTS FROM DATA FILE CASE.DAT. TEE IIFORMATIOI *
C acquired pertaims TO THE dETAILS OF THE SEROUD bODY AS WELL aS THE FLOW *
C CONDITIOES.
C
*** LATEST REVISIOI - 1 FEB 1987 ***
*** PARAMETER DESCRIPTIOI ***
    OUTPUT:
```



```
YJ - Y COORDIILTE OF TEE JET LOZZLE
Y1DOTO I#ITIAL SLOPE OF TEE JET CEHTERIIIE
YEXIT- Y COORDINATE OF THE SHROUD EXIT
DIFSLP DIFFUSER SLOPE
XDIFF- X COORDINATE OF THE START OF THE DIFFUSER *
GAMMA- FREE-STREAM SPEED PARAMETER *
U1O - JET IHITIAL CEYTERLI#E VELOCITY *
BO - IHITIAL JET HALF-WIDTH *
DUMP1- LOGICAL PARAMETER TO COITROL OUTPUT *
C
```



```
C
        IMPLICIT REAL*8(1-B,0-Z)
        LOGICAL DUNP1
C
    READ(4,*) YJ
    READ (4,*) YJ
    READ(4,*) Y1DOTO
    READ(4,*) XEXIT
    READ(4,*) DIFSLP
    READ (4,*) XDIFF
    READ (4,*) GAMMA
    READ(4,*) U10
    READ(4,*) BO
    READ(4,*) DUMP1
C
        RETURI
        EIDD
```

```
        SUBROUTIME JETMAT(#JLS,IJLF,WJUS, MJUF,ICP,YCP,ILPGA, D,IMD1,IID2,
                PD, PE, PF, PG , PH, PPI , C, YORR, A, B, MMAT, BMAT, I,
                ALUR,BLWR, AUPP,BUPP)
C
C************************************************************************************
C
C SUBROUTIIE JETHAT COMPUTES THE IIFLUEMCE COEFFICIEETS FOR THE MATCHIIG
C POIYTS ALOIG THE JET BOUIDARIES.
    *** LATEST REVISIO| - 23 4PR 1987 #** *
    ***PARHMER *
    *** PARAMETER DESCRIPTIOI *** *
    - *
    HJLS - PAIEL IUMBER OF THE BEGIDIIIG OF THE LONER JET BOUNDARY *
    IJLF - PAIEL LUNBER OF THE EUD OF THE LONER JET BDUIDARY *
    IJUS - PAYEL EUIBER OF THE BEGIIIIIG OF TAE UPPER JET BOUMDARY *
    IJUF - PAIEL IUREER OF THE END OF THE UPPER JET BOUTDARY *
    XCP - VECTOR DF COYTROL POIET X COORDIIAIES *
    YCP - VECTOR OF COITRDL POIET Y COORDIMATES *
    ALPHA - VECTOR COITAIIIIG TEE SURFACE SLOPES *
    D - VECTOR COITAIIIIG THE PAEEL LEIGTES *
    IID1 - VECTOR OF IIDEX OF PAIEL ADJOIIIIG TO THE LEFT *
    IND2 - VECTOR OF IIDEI OF PAIEL ADJOIIIIG TO TEE RIGHT *
PD..PPI- SOURCE PARABOLIC FIT COEFFICIEETS *
    C - VECTOR OF SURFICE CURVATURE COEFFICIEETS *
    HORK - WORK SPACE VECTOR *
    A - WORK SPACE VECTOR *
    B - HORK SPACE VECTOR *
    AMAT - MATRIX OF X COMPOEEIT IIDUCED VELOCITIES *
    BMAT - MATRIX OF Y COMPONETT ITDUCED VELOCITIES *
    I - HURBER OF PAMELS
        OUTPUT:
    ALUR - MATRIX OF U-VELOCITY IMFLUEICE COEFFICIEITS FOR THE LOUER BOUNDARY *
    BLWR - MATRIX OF V-VELOCITY IEFLUEICE COEFFICIEITS FOR THE LOWER BOUNDARY *
    AUPP - MATRIX OF U-VELOCITY IIFLUEICE COEFFICIEITS FOR THE UPPER BOUIDARY *
    BUPP - MATRIX OF V-VELOCITY IIFLUEICE COEFFICIEITS FOR THE UPPER BOUNDARY *
*************************************************************************************
C
    IMPLICIT REAL*8(A-H,0-Z)
    DIMEISIOI YCP(I),YCP(I),ALPEA(I),D(I),PD(I),PE(I),PF(I),PG(I),
        PE(I),PPI(I),C(I),I|D1 (I) ,I|D2(I), WORK(8*I),
        A(I),B(I), AMAT(I,I),BMAT(I,I),
        ALWR(IJLFF-IJLS+1,I), BLWR(MJLF-MJLS+1,I),
                        AUPP(IJUFF-IJUS+1,I),BUPP(IJUF-IJUS +1,I)
        *** AREAI5 IS SHARED UITH LURVLC, OIEJET, AID VLCJET ***
        *** AREA16 IS SHARED UITH UPPVLC, OIEJET, AID VLCJET ***
        COMMOM /&REA15/ IL(100),YL(100),UL(100),VL(100), SPLIUL(100,3), IL
        COMMOI /AREL16/ YU(100),YU(100),UU(100),VU(100),SPLIUU(100,3),IU
        *** CALCULATE AID STORE IIFLUEICE COEFFICIEITS FOR THE LONER ***
        *** JET BDUEDARY
        ML=1JLF-IJLS+1
        DO I=1JLF,IJLS,-1
C
```

$I I=I-$ IIJUS +1
$X U(I I)=X C P(I)$
$Y U(I I)=Y C P(I)$
Do $\mathrm{J}=1, \mathrm{I}$ $\operatorname{AUPP}(\mathrm{II}, \mathrm{J})=\operatorname{MMT}(\mathrm{I}, \mathrm{J})$
$\operatorname{BUPP}(\mathrm{II}, \mathrm{J})=\mathrm{BMat}(\mathrm{I}, \mathrm{J})$
ERDD DO
*** USE A POITT SLIGHTLY OFF THE JET BOUEDARY HHEM COMPUTING ***
*** THE VELOCITIES IEAR THE COITROL STATIOI TO AVOID THE SPIRE
*** CAUSED BY THE CURVATURE DISCOITIIUITY
tf(t.gt.(nuuf-5)) tebi
$Y \mathrm{H}=\mathrm{YCP}(\mathrm{I})+(\mathrm{XCP}(\mathrm{I})-\mathrm{XCP}(1 \mathrm{IUF}-5)) * 0.15 \mathrm{D} 0$
CALL IIFLCE (XCP (I) , YH, XCP, YCP, ALPEA, D, I\#D1, IID2 , PD , PE,
DO $\mathrm{J}=1, \mathrm{I}$
$\mathrm{AUPP}(\mathrm{I}$
$\operatorname{AUPP}(I I, J)=A(J)$
EID DO
EID IF
C
END DO
C
C
C
DO $\mathrm{J}=1, \mathrm{I}$
$\operatorname{ALWR}(I I, J)=\operatorname{AMAT}(I, J)$
$\operatorname{BLUR}(I I, J)=\operatorname{BMAT}(I, J)$
EHD DO
*** USE 4 POIET SLIG日TLY OFF THE JET BOUNDARY UHEI COKPUTIMG

*** THE VELOCITIES IEAR THE COITROL STATIOI TO AVOID THE SPIRE ***
*** CAUSED BY THE CURVATURE DISCOITITUITY
IF(I.LT. (MJLS+5)) THEI
$Y \mathrm{M}=\mathrm{YCP}(\mathrm{I})-(\mathrm{XCP}(\mathrm{I})-\mathrm{XCP}(1 \mathrm{JLS}+5)) * 0.15 \mathrm{DO}$
CALL IMFLCE ($\mathrm{XCP}(\mathrm{I}), Y \mathrm{M}, \mathrm{YCP}, Y C P, ~ I L P E A, D, I I D 1, I I D 2, P D, P E$,
DO $\mathrm{J}=1$, I
ALWR $(I I, J)=A(J)$
EHD DO

EHD IF

EHD DO
*** Calculate aid store the Imflueice coefficients for the ***
*** UPPER BOUHDARY
IU = IJUF-IJUS +1
DO I=TJUS, IJUF
*** STAIDARDIZE THE \mathbf{X} COORDIIATE VECTORS **
$I I=1 J L F-I+1$
$\mathbf{X L}(I I)=X C P(I)$
$Y L(I I)=Y C P(I)$

DO $I=1$, $I L$
$X U(I)=\mathbf{L}(I)$
ETD DO
c
returi
End

SUBROUTIEE LHRVLC(X,U,UDOT)
c
C**
C Subroutire lurvlc computes the horizoital componeit of velocity on the * C Loner side of the jet bourdary. C
c *** LATEST REVISIOI - 24 APR 1987 ***
c
C *** PARAMETER DESCRIPTIOI ***
C IIPUT:
CX - distalle from the jet origil
c output
c u - horizomtal componeit of velocity at the station y
c Udot - du/dx at tae station x
c
C***)
C
IMPLICIT REAL*8(4-B,0-Z)
C
C *** areais is shared with jetmat, jetvic and ofejet ***
C

C
CALL IITRP(X,XL, UL, IL ,SPLIUL, $100, \mathrm{U}$, UDOT, D2UDY2, IER $)$
IF(IER.IE.0) TEEI
WRITE $(3,10)$ IER, \mathbf{I}
10
format(' error il lurvlc: imtrp returied mith ier = ', is,
1
, $\mathbf{I}=$ ', F10.5)
stop
EED IF
c
RETURI
END

```
        SUBROUTIIE OIEJET(IJLS, IJLF, EJUS, IJUF,YJ, Y1DOTO, U1O , BO, VO,
        1 ILPEA,V|,I, DUMP, ICALL , UOO, \O, YEHD, Y1EED,RES)
C
C**************************************************************************************
C SURPOUTIEE OUEIET PERFORMS TRE VISCOUS CALCURATIOT UTHIE THE VISCOUS *
    SUBROUTIDE OIEJET PERFORMS TEE VISCOUS CALCULATIOI WITEII THE VISCOUS- *
IIVISCID IITERACTIOI REGIOI. THE DERIVATIVE OF UO IS FOURD FROM THE *
I|VISCID SOLUTIOE VIA & SPLIEE FIT, AID IS USED AS & FORCIMG TERM I\ *
THE VISCOUS SOLUTIOI.
    *** LATEST REVISIOI - 24 APR 1987 ***
    *** PARAMETER DESCRIPTIOY ***
    I|PUT:
IJLS PAIEL IUHBER OF THE BEGIEIIIG OF THE LDHER JET BOUIDARY *
IJLF PAIEL IURBER OF THE EID OF THE LONER JET BOUIDARY *
IJUS PAIEL IUMBER OF THE BEGIIII|G OF THE UPPER JET BOUKDARY *
IJUF PAYEL IURBER OF THE EID OF THE UPPER JET BOURDARY *
YJ - JET IIITIAL Y COORDIIATE
YIDOTO JET CEETERLIIE IIITIAL SLOPE
U10 - JET IHITIAL CEMTERLIEE VELOCITY
BO - JET IMITIAL HALF-WIDTH
VD - FREE STREAM VEIOCITY
ALPEA PAIEL ORIEMTATIOI AIGLES
        bOUIDARY IE THE VISCOUS-IEVISCID IITERICTIOI REGIOI
            *
    boumdary ie The iScous-ITVISCID imTERICTIOI REGIOIN
    # - yumber of paIELS
DUMP- LOGICAL PARAMETER FOR COMTROLLIIG OUTPUT
*
DURP- LOGICAL PARAMETER FOR COITROLLIIG OUTPUT *
ICALL IEDEX TO REEP TRACR OF SUCCESSIVE CALLS TO OHEJET *
    OUTPUT:
UOO - VALUE DF UO AT THE JET EXIT
\triangleO - VALUE OF \ AT TEE JET EXIT
VI - UPDATED EORMAL VELOCITY VECTOR
IEMD- I STATIOI AT WHICH THE VISCOUS-IMVISCID MATCEIIG ENDS
YIEDD VALUE OF Y1 AT XEID
RES - MAXIMUM RESIDUAL II THE VISCDUS-I#VISCID HATCHING
    IMPLICIT REAL*8(A-H,O-Z)
    LOGICAL DUYP
    DIMEISIOI S(7),SD(7),RD(6),W(7,9),C(24),ALPHA(E),VI(M)
    COMMOI UO,U1,P,A,B,Y1, ALP
        *** AREA15 IS SHARED UITH JETMAT, LHRVLC, AID VLCJET ***
        *** AREA16 IS SHARED UITH JETMAT, UPPVLC, AID VLCJET ***
        COMMOI /AREL15/ YL(100),YL(100),UL(10),VL(100),SPLMUL(100,3),IL
        CONMOI /AREA16/ YU(10),YU(100),UU(100),VU(100),SPLMUU(100,3),IU
    EXTERIAL DERIV1
C
    IF(DUNP) TEE:
        REUIID }
        REWIID 10
        REUIID 11
    ETD IF
C
    REWIID 20
```

```
c
    M=7
    MH=7
    TOL=.001DO
    IMD=1
    *** obtain tee mimerpolated value of tee horizoital compopeit of ***
    *** I|viscid velocity at taE jet rozzle
    x=xU(2)-.001
    CALL UPPVLC(X,uNU,uUDOT)
    CALL LURVLC(Y,ULL,ULDOT)
    v00=U0J
    AO=ULL-UUS
    *** define imitial values of the jet parameters ***
    S(1)=000
    S(2)=U10
    S(3)=0.000
    S(4)=AO
    S(5)=BO
    S(6)=YJ
    S(7)=Y1DOTO
    RES =0.0
        *** eiter loop to marca the viscous equatiois
    ME=\JUF-IJUS +1
C
    IF(DUMP) THEI
        WRITE(9,35)
    Format(/,25x,' LOWER JET VELOCItIES ')
    URITE(9,40)
    FORMAT(/,',
        WRITE(10,45)
        FORmat(/,25X, ' UPPER JET vElocities ')
        WRITE (10,40)
        WRITE(11,50)
    FORMAT(/,25X,' JET SOLUTIOM ')
        WRITE(11,55)
        FORMAT(/,' I UO,UODOT U1,U1DOT P,PDOT',
        1 , 1,ADOT B,BDOT Y1,Y1DOT DY1D,D2Y1')
        EID IF
    c
        DO 10 J=2, IE
        YEID =xU(J)
        CALL DVERK(M, DERIV1, X,S, XEID, TOL, IMD,C,MH,W,TER)
        IF(IMD.LT.O.OR.IER.GT.0) THEI
            urite(3,150) IID,IER
            FORMAT(/,' ERROR II THOJET, DVERK RETURIED HITH ITD = ',I5,
                , IER = ',I5)
            STOP
        EID IF
C
c *** obtail the local derivatives of tee jet parameters ***
c
CaLL DERIV1(M, IEID,S,SD)
c
    WRITE(20,62) YEMD,Y1
```

 RL=VVISL-VL(\(J\))
 \(W_{1}=1\). ODO-0. \(8 \mathrm{DO} /\) DFLOAT \((I E-1) * \operatorname{DFLOAT}(J-1)\)
 VIEML \(=\) VII (IJLF- \((J-1))+W 1 * R L\)
 RESL=DABS (RL)
 IF (RESL.GT.RES) RES=RESL
 IF (DUAP) TBEE
 URITE(9, 30) YL(J) , YL(J), UL(J), VL(J) , VVISL, VI(1JLF-(J-1)),
 VIEHL, RL
 FORMAT(8F10.5)
 EID IF
 C
C
C
C
RU=VVISU-VU(J)
$W 1=-(1.0 D 0-0.8 D 0 / D F L O A T(I E-1) * D F L O A T(J-1))$
VHEWU= VE(IJUS $+(J-1))+H 1 * R U$
RESU=DABS (RU)
IF(RESU.GT.RES) RES=RESU
IF(DUAP) TEEI
URITE(10,30) YU(J), YU(J), UU(J),VU(J),VVISU,VI(EJUS+(J-1)),
EID IF
*** MAKE A CORRECTIOI TO THE LOCAL EITRAIIMEIT VELOCITY ***
VI(IJUS $+(J-1))=$ VIEENU
c
C
C
10
C
c
FORMAT (2F10.5)
IF (DUAP) THE
$\operatorname{WRITE}(11,60) \mathrm{XU}(\mathrm{J}),(S(I I), I I=1,7), \mathrm{XL}(J),(S D(I I), I I=1,7)$
FORMAT(8F10.5,/8F10.5,/)
EDD IF
*** COMPUTE TEE VERTICAL COMPOIEIT OF VELOCITY IT THE JET ***
*** BOULDARY FROM TEE VISCOUS SOLUTIOI ***
DO $I=1,5$
$\operatorname{RD}(\mathrm{I})=\mathrm{SD}(\mathrm{I})$
ESD DO
$R D(6)=0.0 D 0$
VVISU=V(RD, YU(J))
VVISL=V(RD,YL(J))
*** UPDATE TEE SUCTIOI VELOCITY OI TEE LONER JET BOUTDARY ***
coitilue
Y1EID=Y1
RETURI
ETD

SUR4 $=0.0 \mathrm{DO}$
DO $\mathrm{J}=1, \mathrm{I}$
SUM3 $=$ SUM $3+A M A T(I, J) * Q(J)$
SUR4 $=$ SUM4 4 BMAT (I, J) $* Q(J)$
EID DO
C
uU=SUni3+U0X
$V V=S U 14+$ UOY
$\mathrm{PR}=0.5 \mathrm{DO} *(\mathrm{UJ} * * 2+\mathrm{VV} * * 2-\mathrm{V} 0 * * 2)$
c
SUR1 $=$ SUSH $1+$ PR $* W T / 3 . O D O * \operatorname{COS}(T H) * R * D T H$
SUR $2=$ SUR $2+$ PR $* D(I) *$ DSIE (ALPEA (I))
TH=TH + DTH
EHD DO

TAUX $=T \mathrm{TS} 1+\mathrm{TC} 1$

*** Conpute the momeitum flux lt the ejector exit
ETAS $=3$. ODO
TP $=\mathrm{BO} / \mathrm{ALP} *($ (UOO $* 2+\mathrm{UOO} * 10+10 * * 2 / 2 . O D O-\mathrm{VO} * * 2) * E T A H-$
$1 \quad 2.0 \mathrm{DD} *(\mathrm{UO} * \mathrm{ETA}+\mathrm{DLOG}(2.0 \mathrm{DO}) / 2.0 \mathrm{DO} * \mathrm{~A}) * \mathrm{VO}$)
PHISP=1. ODD + (TAUX + TP-DFDRAG)/RMJ
TGROSS=SIMS (USQ , O. ODO , H, 30)-VO*SIMS (U, O.ODO, H, 30)
Phimt=TGROSS/RMJ
TIED $=$ TGROSS - (RMJ + TP) + DFDRAG
YRite (21,10) RMJ, TGRoss, TAUX, TILD, DFDRAG, PGisp, Phimt
Format(//,' Jet mohettum = ', F10.5,
, EXITIGG MOMEITUM = ', F10.5,/,
2_{2}, itiduced triust computed from surface pressures $=1$, F10.5, $/$,

4, pressure drag associtited with the diffuser $={ }^{\prime}$, F10.5, $/$,
4, thrust lugmeitatiol ratio from surfice pressures $=$ ', f10.5, /,
5 ' thrust augheitatiol ratio from momeitum theorem $=$ ', f10.5)
PHI=PHIMT
returi
EID

```
        SUBROUTIIE THOJET(XEYIT, YBEGIY,DUIP,PEXIT,DFDRIG,IER)
C
C***********************************************************************************
C SUBROUTIEE THOJET MARCBES TEE YISCOUS SOLUTTIOE UITHTE THE CEABMEL BEYOED *
C THE MATCHIIG REGIOE. * *
C
*** LATEST REVISIOI - 24 APR 1987 ***
    *** PARAMETER DESCRIPTIOI ***
        IIPUT:
YEXIT - Y COORDIIATE OF TEE SEROUD EXIT
*
XBEGII - X COORDIIATE TO START THE MARCHIIG *
DUMP - LOGICAL PARAMETER USED TO COITROL OUTPUT *
    OUTPUT:
PEXIT - STATIC PRESSURE COMPUTED BY THE VISCOUS SOLUTIOI AT THE EXIT
DFDRAG - DRAG ASSOCIATED UITH THE DIFFUSER
*
GRROR PARMHETER: O FOR TORHAL EIECUIIOE, I FOR ERROR
*
C************************************************************************************
C
    IMPLICIT REAL*8(A-H,O-Z)
    LOGICAL DUYP
    DIMEISIOI S(7),SD(7),W(7,9),C(24)
    COMMOI UO,U1,P, A,B,Y1, ALP
        *** ERROR IS SHARED WITR DERIV2 ***
        *** AREA }18\mathrm{ IS SHARED HITH PERFOR
        ***
        *** AREA 21 IS SBARED WITH DUOAUG AID DERIV2
        ***
    COHHOE /ERROR/ IERROR
    COMMOI /AREA18/ H,HDOT
    COMMO: /AREA21/ DIFSLP,XDIFF
    EXTERIAL DERIV2,USQ,U
C
C
C
C
C
    M=7
    MU=7
    TOL=1.D-4
    I|D=1
    *** DECODE THE S VECTOR SO THAT THE VALUES MAY BE SEIT II COMMON ***
        S(1)=U0
        S(2)=U1
        S(3)=P
        S(4)=1
        S(5)=B
        S(6)=Y1
        S(7)=0.0DO
C *** CORPUTE TEE STARIIIG MOMEITUR AID MASS FLUX ***
```

RMJ1 $=$ SIMS (USQ $, 0.0 D 0,2.0 D 0,100)+2.000 * P$
RMDOT1=SIMS (U, O.ODO, 2. ODO ,100)
IF(DUMP) THEI
URITE(12,50) RMJ1, RMDOT1
FORMAT(/,25X,' JET I』 CHAFIEL SOLUTIOI ',/,
' IIITIAL JET MOMEITUM $=$ ', F10.5,' IHITIAL MASS $=$ ',
F10.5)
WRITE $(12,55)$
FORMAT (/, $\quad \mathbf{y}$ UO,UODOT U1,U1DOT P,PDOT',
1 , A,ADOT B, BDOT Y1,Y1DOT ')
END IF
*** IIITILLIZE PARAMETERS FOR THE IHTEGRATIOY OF TBE VISCOUS EQS. ***
$\mathrm{DX}=0.5 \mathrm{DO}$
DIST=XEXIT-XBEGII
HPTS $=$ IITT (DIST/DX)
DY=DIST/DFLOAT(EPTS)
$\chi=\chi$ BEGII
PSTART=P
HSTART $=2.000$
*** EITER LOOP TO MARCH THE VISCOUS EQUATIDMS ***
DO $\mathrm{I}=1$,IPTS
YEHD $=X+D X$
CALL DVERK (H, DERIV2, X, S, YEIMD, TOL , IMD, C, MH, $H, I E R$)
IF (IERRDR.EQ.1) THEI
IER=1
RETURI
EID IF
IF(IID.LT.O.OR.IER.GT.0) THEX
URITE $(3,150)$ IRD,IER
FORMAT(/,' ERROR IH TWOJET, DVERK RETURHED WITH IID = ',IS,
1
, IER = , I5)
IER=1
RETURI
EID IF
IF(DUAP) THEII
CALL DERIV2 ($\mathrm{H}, \mathrm{X}, \mathrm{S}, \mathrm{SD}$)
URITE(12,60) $X,(S(J), J=1,6), X,(S D(J), J=1,6)$
FORMAT(7F11.5,/,7F11.5,/)
EMD IF
EHD DO
*** STORE TEE EXIT PRESSURE AMD COMPUTE THE DIFFUSER PRESSURE DRAG ***
PEXIT=P
DFDRAG=S(7)-(P-PSTART)*HSTART
*** COMPUTE THE FIIAL MOMEETUM AID MASS FLUX ***
RMJ $=$ SIMS (USQ 0.0 ODO, H, 100) +P*HSTART+DFDRAG
RMDOT=SIMS(U,O.ODO, H,100)
IF (DUMP) TEEI
YRITE $(12,70)$ RHJ, RMDOT
FORMAT(' FIMAL MOMEHTUM $=$ ',F10.5,' FIHAL MASS $=$, F10.5)

```
EID IF
    *** IF mOMEDTUM IS IOT COISERVED URITE AI ERRDR RESSAGE
        ERR=(RMJ-RMJ1)/RMJ1
        IF(DABS(ERR).GT.5.D-2) THE.
        URITE(3,80)
        FORMAT(' ERROR I| TUOJET: SIEGULARITIES II CHA#EEL SOLUTIOE')
C
        IER=1
        RETURI
        END IF
C
IER=0
RETURI
ETD
```

```
    FU|CTIOI U(Y)
c
C******************************************************************************
C %
C fuictioi u computes tee jet velocity
*** Latest revisiol - 24 APR 1987 ***
*** PARAMETER DESCRIPTIOI ***
        IIPUT:
c y - distamce from the jet cemterlime
C OUTPUT:
c u - horizomtal componemt of velocity
c
C
        Implicit real*B(a-H,0-Z)
        COMMOI UO,U1,P, A,B,Y1, ALP
    C
        ARG1=ALP*(Y+Y1)/B
        ARG2=ALP*(Y-Y1)/B
        T1=DTAIH(1RG1)
        T2=DTAMH(ARG2)
        S1SQ=1.ODO-T1**2
        S2SQ=1.ODO-T2**2
    c
        U=U0+A/2.ODO*(T1-T2)+U1*(S1SQ+S2SQ)
    c
        RETURII
        END
```

```
    SUBROUTIME UPPVLC(X,U,UDOT)
C
C*************************************************************************************
C SUBROUTIIE UPPVLC COMPUTES THE HORIZOITAL COHPOIEIT OF VELOCITY OE THE
C UPPER SIDE OF THE JET BOURDARY.
C
C *** LATEST REVISIOI - 24 APR 1987 ***
C *** PARAMETER DESCRIPTIOI ***
C I&PUT:
CY - DISTAICE FROM THE JET ORIGIE
C DUTPUT
C U - HORIZONTAL COMPONEET OF vElocity aT tHE STATIOI X
C UDOT - dU/dx AT TEE STATION I
C
C************************************************************************************
C
    INPLICIT REAL*8(1-B,0-Z)
C
C
C
C
    CLLL IITRP(Y,YU,UU,IU,SPL#UU,100,U,UDOT, D2UDI2,IER)
    IF(IER.IE.0) THEM
        HRITE( }3,10) IER,
        FORMAT(' ERROR II UPPVLC: IITRP RETURIED WITH IER = ',I3,
    10
        1 ,Y=,,F10.5)
            STOP
        EID IF
C
    RETURI
    EED
```

```
    FUHCTIOI USQ(Y)
C
C************************************************************************************
c *
c fuiction usq computes the square of tre jet velocity
    *** LATEST REVISIOI - 24 APR 1987 ***
    *** PARAMETER DESCRIPTIOI ***
        IHPUT:
    C Y - DISTAICE FROM THE JET CEITERLIEE
C OUTPUT:
C USQ - SqUIRE OF THE JET vELOCITY
C
C**************************************************************************************
C
        IMPLICIT REAL*8(A-H,O-Z)
        COMMOI UO,U1,P, A , B , Y1 , ALP
C
        C=U(Y)
        USQ=C*C
C
        RETURI
        END
```

```
    FUICTIOI V(RD,Y)
C
C**********************************************************************************
c *
C FUNCTIOE V COMPUTES THE VERTICAL COMPOMEIT OF TBE JET VELOCITY
    *** LATEST REVISIOI - 24 APR 1987 ***
    *** PARAMETER DESCRIPTIOI ***
    IIPUT:
C OUTPUT: *
C V - VERTICAL COMPOIEIT OF VELOCITY
C
C****************************************************************************************
C
    IMPLICIT REAL*8(A-R,O-Z)
    DIMEHSIOI RD(6)
    COMMOI UO,U1, P, A, B, Y1, ALP
C
    COIST=ALP/B
    ETA=COIST*(Y-Yi)
    T=DTAMH(ETA)
    DLC=DLOG(DCOSH(ETA))
    UODOT=RD(1)
    U1DOT=RD(2)
    \triangleDOT=RD(4)
    BDOT=RD(5)
C
    V=-ETA/COIST*UODOT
    1 -T/CO|ST*U1DOT
    +0.5DO/COIST*(DLC-ETA)*ADOT
    +1.ODO/ALP*(-U1*ETA*T**2-(U1+&/2.ODO*ETA)*T+0.5DO*&*DLC+
    4
        U1 * ETA) *BDOT
    C
        RETURI
        EID
```

```
        SUBROUTIEE VLCJET(ALUR,BLWR,IUPP,BUPP,Q,IJLS,IJLF,IJUS,IJUF,
        1 E,VO,BETA,PATH)
C
C************************************************************************************
C *
SUBROUTIDE VLCJET COMPUTES VALUES OF THE VELOCITY COMPOIEITS AT THE *
C LOUER AlDD UPPER SIDES OF THE JET BOUYDARY. *
C SPLINE FITS ARE MIDE TO THE VELOCITY COMPOIEITS AID THE RESULTS SEBT TO *
C SUBROUTIMES UPPVLC AYD LURVLC VIA COMMOI BLOCKS. *
C
    LATEST REVISIOI 24 APR }198
    *** PARAMETER DESCRIPTIOI ***
    IHPUT:
ALUR - IHFLUETCE COEFFICIEITS FOR U-VELOCITY ALOIG TBE LOVER BOURDARY *
BLWR - IAFLUEICE COEFFICIEITS FOR V-VELOCITY ALOIG TEE LOWER BOURDARY *
AUPP - IMFLUEDCE COEFFICIEHTS FOR U-VELOCITY ALOMG THE LONER BOUHDARY *
BUPP - IIFLUEICE COEFFICIEITS FOR V-VELOCITY ALOIG TEE LOUER BOUBDARY *
Q - VECTOR OF SOURCE STREMGTHS *
NJLS - PAIEL IUMBER OF THE BEGI#MIMG OF THE LONER JET BOUNDARY *
HJLF - PAMEI TUMBER OF THE EHD OF THE LOUER JET BOUEDARY *
HJUS - PAMEI YURBER OF THE BEGIFIIIGG OF TEE UPPER JET BOUNDARY *
BJUF - PANEL EUMBER OF THE EID OF THE UPPER JET BOUNDARY *
H - HUMBER OF PABELS *
VO - FREE STREAM SPEED *
BETA - ADGLE OF ATTACK
    OUTPUT:
PATM - UPSTREAM AMBIEET PRESSURE
    SENT VIA COMMOI BLOCR II AREAIS
xL - VECTOR COTTAIIIMG THE ABSCISSA OF THE STATIOIS AT WEICH THE
        VELOCITIES ARE CALCULATED
YL - VECTOR COITAIIIRG TEE ORDIMATES OF THE STATIOIS AT UHICH THE
                VELOCITIES ARE CALCULATED
UL - VECTOR COITAIEIEG TEE HORIZOITAL COHPOIEIT OF VELOCITY
VL - VECTOR COETAIIIIG THE VERTICAL COMPOIEMT OF VELOCITY
SPLEUL- SPLIIE FIT PARAMETERS FOR THE U COMPOEEIT OF VELOCITY IT THE JET
        LOWER BOUEDARY
    SEET VIA COMMOI BLOCK II AREAIG
    XU - VECTOR COITAIMI|G THE ABSCISSA OF THE STATIOIS AT WHICE THE
        VELOCITIES ARE CALCULATED
YU - VECTOR COITAI|IIG THE ORDIYATES OF THE STATIOIS AT HHICH THE
                VELOCITIES ARE CALCULATED
    UU - VECTOR COITAIMIEG THE HORIZOITAL COMPOIEIT OF VELOCITY
VU - VECTOR COMTAIMIMG THE VERTICAL COMPOEEIT OF VELOCITY
SPLBUU- SPLIEE FIT PARAMETERS FOR THE U COMPONEIT OF VELOCITY AT THE JET
                LOUER BOUIDARY
    IMPLICIT REAL*8(A-H,0-2)
    DIMEISIOI LLWR(IJLF-IJLS+1, E), BLMR(IJLF-|JLS+1,!),
    1 \triangleUPP(IJUF-MJUS +1, I), BUPP(IJUUF-IJUS +1,I),Q(I)
        *** LREA15 IS SHARED MITH JETMIT, LURVLC, AID OIEJET
                ***
        *** AREAI6 IS SHARED UITH JETMAT, UPPVLC, ADD OIEJET ***
    COMMOI /AREA15/ YL(100),YL(100),UL(100),VL(100),SPLIUL(100,3),ML
```

commor /areai6/ $\mathrm{XU}(100), \mathrm{YU}(100), \mathrm{UU}(100), \mathrm{VU}(100), \operatorname{SPLIUU}(100,3), \mathrm{yU}$
*** Calculate hid store velocity componeits for tee lower ***
*** JET boundary ***
C
IL=IJLF-IJLS +1
DO I=IJLF, IULS, -1
$\mathrm{II}=1 \mathrm{JLF}-\mathrm{I}+1$
SUM1 $=0$. ODO
SUM2 $=0.0 \mathrm{OD}$
DO $\mathrm{J}=1,1$
SUM1 $=$ SUM $1+\operatorname{ALTRR}(I I, J) * q(J)$
SUH2 $=$ SUM $2+$ BLITR (II, J$) * Q(\mathrm{~J})$
EID DO
$\mathrm{UL}(\mathrm{II})=\mathrm{VO} 0 \mathrm{DCOS}(\mathrm{BETA})+\mathrm{SUM} 1$
$\mathrm{VL}(I I)=\mathrm{V} 0 *$ DSII (BETA) + SUK2
EED DO
c
c *** SPLIRE fit tel LOWER VELOCITY COMPOUETTS ***
c
CALL IQBSCU(XL, UL, IL ,SPLYUL, $100, \mathrm{IER}$)
IF(IER.YE.O) THEI
URITE(5,50) IER
STOP
EID IF
C
C *** CALCULATE AID STORE VELOCITY COMPOIEITS FOR TEE UPPER ***
c
c
EU=TJUF-IJUS +1
DO I=TJUS, IJUF
$I I=I-I J U S+1$
SUR1 $=0.0 D 0$
SUM2 $=0.0 \mathrm{DO}$
DO $J=1$, I
SUA1 $=\operatorname{SUM} 1+\operatorname{UUPP}(I I, J) * Q(J)$
SUH2 $=\operatorname{SUM} 2+\operatorname{BUPP}(I I, J) * Q(\mathrm{~J})$
EID DO
$U U(I I)=V 0 * \operatorname{DCOS}($ BETA $)+S U M 1$
$V U(I I)=V 0 * \operatorname{DSII}(B E T A)+S U S 2$
END DO
C
C *** SPLIIE FIT TEE UPPER VELOCITY COMPOIEITS ***
C CALL IQHSCU(XU,UU, TU,SPLINU,100,IER)
IF(IER.IE.O) THEI
WRITE $(5,50)$ IER
STOP
EID IF
C
C *** CALCULATE THE UPSTREAM ATMOSPHERIC PRESSURE ***
c
$P \triangle T K=0.5 D O *(U U(2) * * 2-V O * * 2)$
C
50 FORMAT(' ERROR II JETVLC, CALL TO IQBSCU RETURIED WITH ,
1 'IER $=$ ', I5)
C
RETURI
EHD

B.3.3 Panel Method Library PAN2LIB

```
        SUBROUTINE GEOK(YBOD, YBOD, ZETA,CX,CY, MORR, I, YCP, YCP, ALPEA,D,
    1
C
```



```
C
C Subroutile geom computes the surface elemeit leigth, radius of
                *
C CURVATURE, ORIEITATIOI II SPACE, AID PARABOLIC FIT COEFFICIEITS *
C
```



```
    *** ParameTER DESCRIPTIOI ***
    IIPUT:
    YBED - VECTOR OF BODY y COORDIILTES
```



```
zeta - mork space vector for the splime fit *
CX - MORK SPACE MATRIX FOR THE I SPLIIE FIT COEFFICIEITS *
cy - work space matrix for the y splile fit coefficiemts *
wORR - MORR SPACE MatrIX FOR PERIODIC SPLIIE FItS *
I - mumber of surface m.mmeits *
    OUTPUT:
xCP - vector of COItrol poilm y coordilates
    YCP - vECTOR OF COUTROL POIET Y COORDIMATES *
    ALPHA - vECTOR OF IGVERE TAGEHTS OF THE SLOPE OF EACH PATEL *
    alpha - vector of inverse taygeits of the slope of each pamel *
    (ORIEITATION ABGLE) *
    D - vector comtainimg tee lemgtes of each paie 者 *
    ind1 - vector of imder of tee parel which adjoils to the left *
C ind2 - vector of Imdex of the paiel which adjoils to the right *
c PD..PPI- PIRABOLIC FIT COEFFICIEITS
    C - vector of surface curvIture coefficiemts
c
c
        ImPLICIT REAL*8(a-h,0-Z)
        LOGICAL PERDT
```



```
c
    PI=3.141592654DO
        *** CEECK FOR PERIODIC GEOMETRY ***
    XDIFF=YBOD(I+1)-XBOD(1)
    YDIFF=YBOD(I+1)-YBOD(1)
    IF(DABS(XDIFF).LT.1.E-3.AID.DABS(YDIFF).LT.1.E-3) THEI
        PERDT=. TRUE.
        XBOD(\mathbf{I}+1)=\MOD(1)
        YBOD(I+1)=YBOD(1)
        else
        PERDT=. FALSE.
    EID IF
c
    DO I=1,I
c
        DX=XBOD(I+1)-YBOD(I)
        DY=YBOD(I+1)-YBOD(I)
c
```

```
C
C
C
C
C
C
C
C
C
    2ETA(1)=0.0DO
    DO I=2,I+1
        ZETA(I)=2ETA(I-1)+D(I-1)
    EHD DO
C
    IF(PERDT) THEI
    CALL ICSPLI(ZETA, YBOD,I+1,CX,I, HORK,IER)
    IF(IER.IE.0) THEI
        URITE(3,7) IER
        format(' error in geom, icsccu returmed uite IER = ',I4)
        STOP
        ERD IF
        CALL ICSPLI(ZETA, YBOD,I+1,CY, I, HORK,IER)
        IF(IER.IE.0) THEI
            WRITE (3,7) IER
            STOP
        EMD IF
        ELSE
        CALL ICSCCU(ZETA, XBOD,N+1,CX,M,IER)
        IF(IER.IE.0) THEI
            URITE (3,7) IER
            STOP
        EID IF
        CALL ICSCCU(ZETA, YBOD,I+1,CY,I,IER)
        IF(IER.IE.0) THEI
            URITE(3,7) IER
            STOP
        EID IF
        ERD IF
    C
        DO I=1,I
    c
C
C
    *** COMPUTE TEE PAIEL LENGTH ***
D(I)=DSQRT(DX**2+DY**2)
IF(DABS(DX).LT.1.D-6) THEM
    IF(DY.GT.O.ODO) TEEI
        ALPHA(I)=PI/2.ODO
    ELSE
        ALPBA(I)=-PI/2.ODO
        E[D IF
ELSE
    ALPHA(I)=DATAE(DY/DY)
    IF(DY.LT.O.ODO.AID.DX.LT.O.ODO) 1LPHA(I)=ALPHA(I)-PI
    IF(DY.GE.O.ODO.AID.DX.LT.O.ODO) ALPHEA(I)=ALPHA (I) +PI
EIID IF
    EHD DO
    *** SPLIIE FIT THE BODY COORDIHATES IS 1 FUYCTIOV OF IGE ***
    *** PAMEL LEMGTH
            *** FIId tee coitrol poiet locatiol aid Surface derivatives ***
        Z=0.5DO*(ZETA(I)+ZETA(I+1))
        CLLL IITRP(Z,ZETA, XBOD,I+1,CX,I,MX,DXDZ,D2YDZ2,IER)
        IF(IER.IE.O) TRE|
            URITE(3,20) IER,2
```

 FORMAT(' ERROR II GEOM: IHTRP RETUREED WITH IER \(=\) ', I3,
 , \(\mathbf{Y}=\), ,F10.5)
 STOP
 ETD IF
 CALL I\#TRP (Z, ZETA , YBOD, I+1, CY, I, YY, DYDZ , D2YDZ2, IER)
 IF(IER.IE.0) THED
 \(\operatorname{URITE}(3,20)\) IER, \(Z\)
 STOP
 EID IF
 \(\mathbf{X C P}(I)=\mathbf{X Y}\)
 \(Y C P(I)=Y Y\)
 \(C(I)=(D X D Z * D 2 Y D Z 2-D Y D Z * D 2 X D Z 2) /(D X D Z * * 2+D Y D Z * * 2) * * 1.5 D O\)
 C
 C
 C
L1 $=\mathrm{I}-1$
$\mathrm{L} 2=\mathrm{I}$
$\mathrm{L} 3=\mathrm{I}+1$
IF (PERDT.AID.I.EQ.1) L1=1
IF (PERDT. AID.I.EQ. H) L3=1
IF (. HOT. PERDT.AED. (I.EQ.1.OR.I.EQ.I)) THEI
$P D(L 2)=0.0 D 0$
$\operatorname{PE}(L 2)=0.0 D 0$
$\operatorname{PF}(L 2)=0.000$
$\operatorname{PG}(L 2)=0.0 D 0$
$\mathrm{PH}(\mathrm{L} 2)=0.0 \mathrm{DO}$
$\operatorname{PPI}(L 2)=0.0 D 0$
ELSE
$\Delta=0.5 D 0 *(D(L 1)+D(L 2))$
$B=0.5 D 0 *(D(L 2)+D(L 3))$
$P D(L 2)=-B /(A *(A+B))$
$\operatorname{PE}(L 2)=(B-A) /(A * B)$
$\operatorname{PF}(L 2)=A /(B *(A+B))$
$\operatorname{PG}(L 2)=2.0 \mathrm{DO} /(4 *(4+B))$
$\mathrm{PB}(\mathrm{L} 2)=-2.0 \mathrm{O} 0 /(\mathrm{A} * \mathrm{~B})$
$\operatorname{PPI}(L 2)=2.0 \mathrm{DO} /(B *(A+B))$
END IF
C
END DO
C
C
C
DO $\mathrm{I}=1$, I
IID1 (I) $=\mathrm{I}-1$
IID2 (I) $=\mathrm{I}+1$
EED DO
C
IF(PERDT) THEI
IID1 (1) =】
I ID2 (I) $=1$
ELSE
I $\operatorname{DD} 2(1)=0$
EID IF
C
RETURI
END

```
    SUBROUTIHE GETDAT(IUUIT, XBOD,YBOD,VI,I,VO, BETA)
C
C*************************************************************************************
C SUBROUTIIE GETDAT READS THE DATA FILE BODY.DAT TO OBTAII THE COORDIHATES *
C OF THE SHROUD GEOMETRY AS WELL AS TEE MORMAL vELOCITY AT EACH PAMEl.
    *** LATEST REVISIOI - 28 JAII 1987 *** *
    *** PARAMETER DESCRIPTIOI *** *
            IMPUT: *
    TUIIT - LOGICAL UIIT FOR DATA IIPUT *
    THE IIPUT IS TEE DATA FILE BODY.DAT HEICH COITAIIS TEE Y AED Y COORDIHATES
    ALOIG wITH THE TRAISPIRATIOI VELOCITY FOR EACE PATEL
            OUTPUT:
    YBOD - VECTOR COETAIIIMG TBE ABSCISSA OF THE BODY POIETS *
    YBOD - vEGTOR COITAIIIMG THE ORDIIATES OF THE BODY POIETS *
    vi - vEcTOR OF PAYEL TRABSPIRATION VELOCITIES *
    | - EUMBER OF SURFACE ELEMEITS (YUMBER OF BODY POIHTS - 1) *
C*****************************************************************************************
C
    IMPLICIT REAL*8(1-H,O-Z)
    DIMESSIOM YBOD(1),YBOD(1),VM(1)
C
    REHIED WUIIT
    RENITD 2
C
    DO I=1,500
        READ(IUNIT,*,EMD=10) YBOD(I),YBOD(I),VII(I)
        ETD DO
        I=I-2
10
    READ(2,*) VO,BETA
C
    RETURI
    END
```

```
        SUBROUTIME IMFIIV(XCP,YCP, ALPHA, D,IED1,IID2, PD, PE,PF,PG,PH,PPI,C,
    I WORK,A,B,W,I, AMAT,BMAT,HIZV)
C
C************************************************************************************
MATRIX.
    *** LATEST REVISIOI - 28 JAI 1987 ***
    *** PARAMETER DESCRIPTIO| ***
    INPUT:
XCP - VECTOR COUTAIIIIG THE COITROL POIIT Y COORDIIATES
YCP - vECTOR COITAI|IIG THE COITROL POIET Y COORDIIATES
ALPHA - VECTOR COITAI#IMG THE SURFACE SLOPE AIGLES FOR EACH PAYEL
D - vECTOR COHTAIIIHG THE PATEL LEIGTHS
IND1 - VECTOR OF PAIEL IMDEX UHICB ADJOITS TO THE LEFT
IND2 - VECTOR OF PAHEL IHDEX WHICH ADJOIES TO THE RIGHT
PD..PPI PARABOLIC FIT COEFFICIEITS
C - vECTDR OF SURFACE CURVATURE COEFFICIEITS
WORR - WORR SPACE MATRIX
A - HORK SPACE VECTOR TO HOLD Y VELOCITY ITFLUEICE COEFFICIEHTS
B - WORK SPACE VECTOR TO HOLD Y VELOCITY IHFLUEYCE COEFFICIERTS
\ - WORK SPACE MATRIX TO TEMPORARILY HOLD THE IHFLUEXCE COEFFICIENTS
I - IumbER OF PAIELS
    OUTPUT:
AMAT - MaTRIX IF HORIZOHTAL IEDUCED VELOCITIES
BMAT - MATRIX OF VERTICAL IHDUCED VELOCITIES
C WINV - INVERSE OF THE AERODYIARIC INFLUEICE COEFFICIEIT MATRIX
C
C************************************************************************************
C
    IMPLICIT REAL*8(A-H,0-Z)
    DIMENSIO\ XCP(I),YCP(I), LLPH\(I), D(I) , PD(|) , PE(I) , PF(I) , PG(I),
                        PE(I),PPI(I),C(I),WIMV(I, I),W(I,I), पORK(8*I),IMD1 (I),
                        IMD2(I),A(I), B(I),AMAT(I, I), BHAT(I,I)
C
C *** GEFERATE THE AERODYMAYIC IEFLUEICE COEFFICIE|T MATRIY ***
    DO I=1,I
    x=\CP(I)
    Y=YCP(I)
    CALL IEFLCE(Y,Y,XCP,YCP,ALPPHA,D,IID1,I|D2 ,PD,PE,PF,PG,PH,
    1
    DO J=1,I
            MMAT(I,J)=A(J)
            BMAT(I,J)=B(J)
            W(I,J)=B(J)*DCOS(ALPGA(I))-A(J)*DSII(ALPHA(I))
        END DO
    EMD DO
C
C *** IIVERT THE MATRIX USIIG LIIVIF ***
C
    CALL LI|V1F(W,I,I,NIIV,O,WORR,IER)
    IF(IER.EQ.129) THEI
        NRITE(3,20)
        FORMAT(' ERROR II IIFIIV, LIIVIF FOUND A SI|GULAR MATRIX ')
        STOP
    ERD IF
```

```
        SUBROUTI#E IIFLCE(X,Y,YCP,YCP, ALPEA,D,I#D1,IID2,
        1 PD,PE,PF,PG,PG,PPI,CC,W,I,A,B)
C
C
C SUBROUTI|E I|FLCE COMPUTES THE AERODYMAMIC IIFLUEDCE COEFFICIE#TS FOR
USE II THE HIGHER ORDER PAIEL METHOD.
*** LATEST REVISIOI - 28 JaI 1987 ***
*** PARAMETER DESCRIPTIOI ***
    IMPUT:
X - Y COORDIHATE AT WHICH THE ITFLUEICE COEFFICIEMT IS TO bE CALCULATED *
Y - Y COORDIEATE AT WHICH THE INFLUEECE COEFFICIEHT IS TO BE CALCULATED
XCP - VECTOR OF COMTROL POIET Y COORDIHATES
YCP - VECTOR OF COHTROL POIET Y COORDIHATES
aLPHa - vector of Surface slopes for each panel
D - VECTOR OF PAIEL LEHGTES
IND1 - VECTOR OF PAEEL TEDEY UHICB ADJOIUS TO TEE LEFT
NECTOR OF PAEEL IIDEY WHICE ADJOINS TO THE LEFT *
IND2 - VECTOR OF PAPEL IIDEX YHICH ADJOIUS TO THE RIGHT *
PD..PPI PARABOLIC FIT COEFFICIEITS *
CC - VECTOR OF SURFACE CURVATURE COEFFICIEITS *
W - YORK SPACE FOR TEMPORARILY STORIIG THE IMDUCED VELOCITY COMPOHENTS
| - mumber of palels
    OUTPUT:
    | - VECTOR OF IDFLUEECE COEFFICIEITS FOR THE Y COMPOVEET OF VELOCITY
    B - VECTOR OF IIFLUEICE COEFFICIEITS FDR THE Y COMPONEMT OF VEIOCITY
C*************************************************************************************
C
        IMPLICIT REAL*8(A-H,0-Z)
        DIMENSIOY XCP(I),YCP(H), MLPHA(#),D(|), PD(|), PE(I),PF(I), PG(H),
    1
                        PH(I),PPI(H),CC(I),IMD1(I),ITD2(I),W(8,I),A(I),B(I)
    PI=3.14159265DO
    DO J=1,I
        C=DCOS(ALPEA(J))
        S=DSII(ALPHA(J))
C
        RX=X-ICP(J)
        RY=Y-YCP(J)
        RO=DSQRT(RX**2+RY**2)
        IF(RO.EQ.0) THEI
            EPS=1.D8
        ELSE
            EPS=D(J)/RO
        EID IF
        EPS2=EPS**2
C
            IF(EPS.LT.7.5D-2) THEI
C
C
C
C
                *** USE APPROXIMATE FORMULAS IF THE FIELD POIHT IS VERY FAR ***
                *** AWAY FROM THE PAMEL COMTROL POIHT
ALP \(=R X / R O\)
BET=RY/RO
AUX1 \(=\triangle L P * C+B E T * S\)
```

c

C
C

C
C
C
C

C

C
$A U X 2=-A L P * S+B E T * C$

ELSE
$U(1, J)=2 . O D O * E P S *$ ALP
$U(2, J)=2 . O D O * E P S * B E T$
$W(3, J)=E P S 2 / 6 . O D O *(2 . O D O *$ ALP*AUX1-C)
$W(4, J)=$ EPS $2 / 6.0 D O *(2 . O D O * B E T * A U X 1-S)$
$W(5, \mathrm{~J})=E P S 2 / 12$. ODO* ($2.0 \mathrm{OD} *$ ALP* \& $\mathrm{HY} 2+\mathrm{S}$)

$W(7, J)=W(1, J) / 24.0 D O$
$W(8, J)=W(2, J) / 24.0 D 0$
$\mathbf{X I}=R X * C+R Y * S$
$E T A=-R X * S+R Y * C$
IF(EPS.LT.3.OD-1) THEI
*** USE AIIOTHER SET OF APPROXIMATIOIS IF THE FIELD POIET IS ***
*** MODERATELY FAR AHAY FROM TEE PANEL COITROL POIUT ***
ALP=XI/RO
$\Delta L P 2=A L P * * 2$
BET=ETA/RO
BET2 $=$ BET**2
$\triangle U X 1=(\operatorname{ALP} 2 / 3 . O D O-0.25 D 0) * E P S 2$
$\triangle U X 2=(A L P 2 / 3 . O D O-1$. ODO/12.ODO) $*$ EPS 2
$\triangle U X 3=2 . O D O * A L P 2-1 . O D O$
AUX4 $=$ (8.ODO* (ALP2-1.ODO) *ALP2 +1. ODO) $* E P S 2$
$V O X=2 . O D O * A L P * E P S *(1 . O D O+A U X 1)$
VOE $=2 . O D O * B E T * E P S *(1 . O D O+\angle U X 2)$
V1X=EPS2/6. ODO* (AUX3+1.5D-1*1UX4)
$V 1 E=A L P * B E T * E P S 2 / 3 . O D O *(1.0 D 0+0.3 D 0 * A U L 3 * E P S 2)$
$V C X=A L P * B E T * E P S 2 / 6.0 D 0 *(1.0 D 0+0.9 D 0 * A U Y 3 * E P S 2)$
VCE=EPS $2 / 12$. ODO* ($(2.0 D 0 * B E T 2-1 . O D O)-7.5 D-2 * A U X 4)$
V2I $=1 L P * E P S / 12.000 *(1.0 D 0+1.8 D 0 *$ AUI 1$)$
$V 2 E=B E T * E P S / 12 . O D O *(1.0 D 0+1.8 D 0 *$ AUY2)

ELSE

```
*** USE THE EQUATIOIS WITHOUT APPROXIMATIOE IF TBE FIEID ***
```

*** POIIT IS CLOSE TO THE PAYEL COETROL POIIT ***
YI2=xI**2
ETA2=ETA**2
$D E I=D(J)$
DEL2=DEL**2
$\mathrm{R} 1 \mathrm{SQ}=(\mathrm{XI}+0.5 \mathrm{DO} * \mathrm{DEL}) * * 2+E T A 2$
$R 2 S Q=(X I-0.5 D 0 * D E L) * 2+E T \angle 2$
C1 $=\mathrm{DLOG}$ (R1SQ/R2SQ)
RIUH=ETA*DEL
DENOM $=\mathbf{X I} 2+E T 12-0.25 D 0 *$ DEL2
C2 $=2$. ODO*DATAI (RIUN/DEPOM)
IF (DABS (RHUM).LT.1.D-6.AID.DEIOH.LT.O.ODO) THEI
$\mathrm{C} 2=2.0 \mathrm{DO} * \mathrm{PI}$
ELSE
IF(RMUR.GT.O.ODO.ATD.DETOM.LT 0.0 ODO) $\mathrm{C} 2=\mathrm{C} 2+2 . O D O * \mathrm{PI}$
IF(RIUM.LT.O.ODO. \triangle ID.DEIOM.LT.O.ODO) $\mathrm{C} 2=\mathrm{C} 2-2 . O D O * P I$

EDD IF

AUXI =ETA*C2+XI*C1

IF(JM1.IE.O) THEI

$V X J M 1=W(3, J M 1) * P F(J M 1) * D(J H 1)+W(7, J M 1) * P P I(J M 1) * D(J M 1) * * 2$
$V Y J M 1=W(4, J M 1) * P F(J M 1) * D(J M 1)+W(8, J K 1) * P P I(J M 1) * D(J M 1) * * 2$
ELSE
VXJM1 $=0.0 \mathrm{OD}$
VYJM1 $=0.0 \mathrm{DO}$
END IF
IF(JP1.TE.0) THEI
VYJP1 $=W(3, J P 1) * P D(J P 1) * D(J P 1)+W(7, J P 1) * P G(J P 1) * D(J P 1) * * 2$
$V Y J P 1=W(4, J P 1) * P D(J P 1) * D(J P 1)+W(8, J P 1) * P G(J P 1) * D(J P 1) * * 2$
ELSE
$V X J P 1=0.0 D 0$
VYJP1 $=0.0 \mathrm{DO}$
EID IF
C
$\Delta(J)=V X J+V X J M 1+V X J P 1$
$B(J)=V Y J+V Y J M 1+V Y J P 1$
C
E畩 DO
c
RETURI
EED

SUBROUTIME STRYTH(ALPHA, VI, IIYV, I, VO, BETA, Q)
C


```
C *
    SUBROUTIIE STRITH COMPUTES THE PAEEL SOURCE STREIGTES. *
    *** LATEST REVISIO! - 28 JA! 1987 **** *
    * *
    *** PARAMETER DESCRIPTIOI *** *
    INPUT : *
    ALPHA - VECTOR CONTAI|IMg tHE SURFACE SLOPE FOR EACH PABEI
    VI - VECTOR COITAI|IIG THE TRAESPIRATIOI VELOCITY FOR EACH PAIEL *
    HINV - ITVERSE OF THE AERODYIARIC IIFLUEICE COEFFICIEHTS *
    # - IUMBER OF PAMELS *
    VO - FREE STREAM VELOCITY *
    BETA - AIGLE OF ATTACK *
    OUTPUT:
Q - VECTOR CO#TAIIIHG THE SOURCE STREIGGTES
C*********************************************************************************
```

C
IMPLICIT REAL* 8 ($\mathbf{A}-\mathrm{B}, 0-\mathrm{Z}$)
DIMEISIOT ALPHA(I), VI(I) , UITV(I,I), Q(I)
C
DO $I=1,1$
SUM=O.ODO
DO $\mathrm{J}=1$, I
SUM=SUK+HIIV(I, J)*(VO*DSII(ALPEA(J)-BETA)-VI(J))
EED DO
$Q(I)=S U M$
EIDD DO
C
RETURI
EID

B.3.4 Mathematics library MATHLIB


```
    D2YDX2=6.0DO*SPLI(J,3)*D+2.ODO*SPLI(J,2)
    IER=0
    RETURI
EHD
```

```
    SUBROUTIIE LIMTRP(X,XP, YP,SPLI,I, Y,DYDX,IER)
C
C****************************************************************************************
SUBROUTITE LIITRP WAS URITTEI FOR THE JOIET IUSTITUTE FOR AEROIAUUTICS
C AID ACOUSTICS AT STAMFORD UIIVERSITY BY THOMAS LUID. LATEST REVISIOY 17
C JULY 1984.
C
G THIS SUBROUTIIE USES SLOPES GEIERATED BY SUBROUTIIE LISPLI TO FIID
C ImTERPOL&TED VALUES OF A FUICTIOY AID ITS DERIVATIVE AT Ally STATIOI 
C
**PARAMETER DESCRIPTIOI**
    IPPUTS:
I - IIDEPETDEMT COORDIIATE. I MUST BE WITBII TBE RAIGE OF WHICH WAS *
            SEMT TO SUBROUTITE LHSPLI.
XP - VECTOR DF LEIGTH & COHTAI#IMG TEE X COORDIHATES OF & FUICTIOE P. *
YP - vECTOR OF LEIGTH I COETAIIIMG THE VALUE OF P AT X STATIOHS *
        CORRESPOIDIIGG TO THOSE II XP.
SPLI- VECTOR OF SLOPES AS OBTAIMED FROM & CALL TO SUBROUTIME LISPL|.
I - EUMBER OF DATA POIETS USED II THE SPLIEE FIT (DIMEISIOI DF VECTORS XP
        AHD YP)
    OUTPUTS:
    Y - I|TERPOLATED VaLUE OF THE FUNCTIOE AT THE STATIOE Y
DYDX - IETERPOLATED VALUE OF TEE FIRST DERIVATIVE OF TBE FUYCTIOI AT THE
        STATIOE Y
IER - ERROR PARAMETER, OI SUCCESSFUL TERHIIATIOI IER IS SET TO 2ERO, IER=1 *
        INDICATES THAT Y WAS DUT OF BOUNDS OF THE
        SPLIIE FII SLOPES.
    **PRECISIOI** - ILL PARAMETERS AID IETERILL VARIABLES ARE DOUBLE PRECISIOE *
    C
C
    IMPLICIT REAL*8(1-H,0-Z)
    DIMEISIOI XP(1),YP(I),SPLI(I-1)
    IER=0
    |F=Y-1
        *** VERIFY THAT X IS HITHII THE PROPER RIIGE ***
        *** EPS IS USED IS & TOLERIICE FOR ROUID-OFF ERROR ***
    EPS =1.OD-6
    IF((XP(1)-X).GT.EPS.OR. (X-XP(I)).GT.EPS) THEI
        IER=1
        RETURM
    EID IF
        *** SEARCH THROUGH THE ABSCISSA VECTOR TO LOCATE THE IMTERVAL II ***
        *** UHICH X LIES. ***
    DO 10 J=1, IF
        IF(J.EQ.IF) GOTO 20
        IF(X.GE.(XP(J)-EPS).AID.X.LT.XP(J+1)) GOTO 20
    COITIIUE
C
C
        *** compute Imterpolated values ***
```

c
20
$\mathrm{D}=\mathrm{x}-\mathrm{xp}(\mathrm{J})$
$Y=S P L 1(J) * D+Y P(J)$
DYDI $=$ SPLI (J)
C
RETURI
EED

SUBROUTIIE LISPLI(I, Y, I, SLOPE, IER)

SUBROUTIME RR2(1, FCI, I, Y, YEMD)


```
    IXJY=I*(JX-1)+IX SIMQ1040
    JJX=IXJX+IT
SIMQ1050
    60 A(IXJX)=A(IXJX)-(A(IXJ)*&(JJX))
    65 B(IX)=B(IX)-(B(J)*A(IXJ))
70 MY=$-1
    IT=畀*I
    DO 80 J=1,IY
    IA=IT-J
    IB=|-J
    IC=1
    DO 80 K=1,J
    B(IB )=B(IB)-A(IA)*B(IC)
    IA=IA-B
80 IC=IC-1 SIMQ1200
220 IF (I.EQ.ID) RETURI
    IJ = |*I +1
    DO 110 L=1,I
    DO 110 K=1,I ARRAY
    IJ = IJ-1
110 AD(I-L+1,I-K+1)=A(IJ)
    RETURH
    END
SIMQ1060
SIMQ1070
SIMQ1110
    SIMQ1120
SIMQ1130
    SIMQ1140
SIMQ1150
    IC=1
    SIMQ1160
SIMQ1180
SIMQ1190
SIMQ1200
ARRAY
ARRMY
ARRAY
    ARRAY
ARRAY
ARRAY
ARRAY
SIMQ1210
```



```
    z=z+Dz
continue
    *** RETURI TEE APPROXIMATED IMTEGRAL ***
SIMS=SUM*DZ/3.ODO
RETURI
EED
```


Bibliography

[1] Porter J. L. and Squyers R. A. A Summary/Overview of Ejector Augmentor Theory and Performance. Technical Report ATC Report No. R-91100/9cr47A, Office of Naval Research and The Air Force Office of Scientific Research, 1979.
[2] Quinn B. Thrust Augmenting Ejector: A Review of the Application of Jet Mechanics to V/STOL Aircraft Propulsion. Technical Report CPP-308, AGARD, 1981.
[3] von Karman T. Theoretical remarks on thrust augmentation. In Contributions to Applied Mechanisc, Reissner Anniversary Volume, pages 461-468, Edwards, J. W., Ann Arbor Mich., 1949.
[4] Keenan J. H., Neumann E. P., and Lustwerk F. An investigation of ejector design by analysis and experiment. Journal of Applied Mechanics, 17(3):299309, 1950.
[5] Quinn B. Wind Tunnel Investigation of the Forces Acting on an Ejector in Flight. Technical Report 70-0141, Aerospace Research Laboratories, July 1970.
[6] Nagaraja K. S., Hammond D. L., and Graetch J. E. One-dimensional compressible ejector flows. AIAA Paper 73-1184, 1973.
[7] Hedges K. R. and Hill P. G. Compressible flow ejectors - development of a finite difference flow model. Transactions of the AMSE, Ser. I. J. Fluids Engineering, 96(3):272-288, 1974.
[8] Lasinski T. A., Andrews A. E., Sorenson R. L., Chaussee D. S., Pulliam T. H., and Kutler P. Computation of the steady viscous flow over a tri-element augmentor-wing airfoil. AIAA Paper 82-0021, 1982.
[9] Bevilaqua P. M. and McCullough J. K. Entrainment method for v/stol ejector analysis. AIAA Paper 76-419, 1976.
[10] Bevilaqua P. M. and DeJoode A. D. Viscid/Inviscid Interaction Analysis of thrust Augmenting Ejectors. Technical Report CP 2093, NASA, 1979.
[11] Bevilaqua P. M., Woan C. J., and Schum E. F. Viscous/Inviscid Interaction Analysis of Ejector Wings. Technical Report AFWAL-TR-82-3059, Air Force Wright Aeronautical Laboratories, 1982. Proceedings: Ejector Workshop For Aerospace Applications.
[12] Tavella D. A. and Roberts L. Analysis of Confined Turbulent Jets. Technical Report JIAA TR-51, Joint Institute for Aeronautics and Acoustics, Stanford University, December 1982.
[13] Tavella D. A. and Roberts L. A simple viscous-inviscid aerodynamic analysis of two-dimensional ejectors. AIAA Paper 84-0281, 1984.
[14] Lund T. S., Tavella D. A., and Roberts L. A zonal computational approach to thrust augmentor optimization. AIAA Paper 85-0110, 1985.
[15] Foa J. V. Energy Transfer Rate In Axial-Flow Crypto-Steady Pressure Exchange. Technical Report TR AE 6102, Rensselaer Polytechnic Institute, Troy, New York, February 1961.
[16] Hohenemser K. H. and Porter J. L. Contribution to the theory of rotary jet flow induction. Journal of Aircraft, 3(4):339-346, July-A ugust 1966.
[17] Viets H. Flip-flop jet nozzle. AIAA Journal, 13(10):1375-1379, October 1975.
[18] Stow P. Incorporation of viscous-inviscid interactions in turbomachinery design. In Advanced Study Institute on Thermodynamics and Fluid Mechanics of Turbomachinery, NATO, September 1985.
[19] Hirsch C. and Janssens P. Viscous-inviscid interactions in cascades. Israel Journal of Technology, 20(3):109-126, 1982.
[20] Streett C. L. Viscous-inviscid interaction method including wake effects for three-dimensional wing-body configurations. AIAA Paper-81-1266, 1984.
[21] Waggoner E. G. Transonic three-dimensional viscous-inviscid interaction for wing-body configuration analysis. AIAA Paper 82-0163, 1982.
[22] Baker A. J. and Orzechowski J. A. A viscous-inviscid interaction algorithm for three-dimensional turbulent subsonic aerodynamic juncture region flow. AIAA Paper 82-0100, 1982.
[23] Inger G. R. and Habashi W. G. Modular application of a shock/boundary layer interaction solution to supercritical viscous-inviscid flow field analysis. In Computational Methods in Viscous Flows, pages 1-38, Pinridge Press, Swansea, England, 1984.
[24] Edwards D. E., Carter J. E., and Hafez M. M. Viscous/inviscid interaction analysis of transonic shock induced separated flow including normal pressure gradients. AIAA Paper 85-0371, 1985.
[25] Liou M. S. Analysis of viscous-inviscid interactions in transonic internal flows with a shock wave and mass transfer. AIAA Paper 81-0004, 1981.
[26] Meier H. U. and Kreplin H. P. Boundary layer separation due to weak and strong viscous-inviscid interaction on an inclined body of revolution. In Viscous and Interacting Flow Field Effects, Air Force Wright Aeronautical Laboratories, 1984. Report Number AFWAL-AD-P004789.
[27] Pletcher R. H. Calculation of separated flows by viscous-inviscid interaction. In Computational Methods in Viscous Flows, pages 365-394, Pinridge Press, Swansea, England, 1984.
[28] van Dalsem W. R. Simulation of Separated Transonic Airfoil Flow by FiniteDifference Viscous-Inviscid Interaction. PhD thesis, Stanford University, 1984.
[29] Kwon O. K. Application of a viscous-inviscid interaction procedure to predict turbulent separating flows over a rearward-facing step. In Computation of Internal Flows: Methods and Applications; Proceedings of the Energy Sources Technology Conference, pages 65-71, American Society of Mechanical Engineers, AMSE Press, New York, 1983.
[30] Williams B. R. The prediction of separated flow using a viscous-inviscid interaction method. In International Council of the Aeronautical Sciences, American Institute of Aeronautics and Astronautics, New York, 1984.
[31] Hall E. J. and Pletcher R. H. Application of a viscous-inviscid interaction procedure to predict separated flows with heat transfer. ASME Paper 83-WA/HT-7, 1984.
[32] Vatsa V. N. and Verdon J. M. Viscous/inviscid interaction analysis of asymmetric trailing-edge flows. AIAA Paper 84-0266, 1984.
[33] Le Balleur J. C. and Girodroux-Lavigne P. A semi-implicit and unsteady numerical method of viscous-inviscid interaction for transonic separated flows. La Recherche Aerospatiale, ISSN 0379-380x(1):15-37, 1984.
[34] Inger G. R. and Huang M. K. Application of unsteady laminar triple-deck theory to viscous-inviscid interactions form an oscillating flap in supersonic and subsonic flow. Journal de Mechanique Theorique et Appliquee, 2(3):325349, 1983.
[35] McCroskey W. J. and Pucci S. L. Viscous-inviscid interactions on oscillating airfoils in subsonic flow. AIAA Paper 81-0051, 1981.
[36] Lund T. S. A Zonal Computational Procedure Adapted to the Optimization of Two-Dimensional Thrust Augmentor Inlets. Technical Report JIAA TR-6, Joint Institute for Aeronautics and Acoustics, Stanford University, July 1985.
[37] Churchill R. V. and Brown J. W. Complex Variables and Applications. McGraw-Hill, New York, 1984.
[38] Milne-Thomson L. M. Theoretical Hydrodynamics. Macmillan Press, London, 1972.
[39] Holst T. L. Numerical Computation of Transonic Flow Governed by the Full Potential Equation. Technical Report TM-84310, NASA, 1983.
[40] Hess J. L. and Smith A. M. O. Calculation of potential flow about arbitrary bodies. In Progress in Aeronautical Sciences, Pergamon Press, 1967.
[41] Ashley H. and Landahl M. Aerodynamics of Wings and Bodies. AddisonWesley, Reading Mass., 1965.
[42] Kuetue A. M. and Chow C. Y. Foundations of Aerodynamics: Bases of Aerodynamic Design. John Wiley and Sons, New York, 1976.
[43] Carrier G. F. and Pearson C. E. Partial Differential Equations. Academic Press, New York, 1976.
[44] Hess J. L. and Friedman D. M. Analysis of complex inlet configurations using a higher-order panel method. AIAA Paper 83-1828, 1983.
[45] Hess J. L. Higher order numerical solution of the integral equation for the two-dimensional neumann problem. Computer Methods in Applied Mechanics and Engineering, 2:1-15, 1973.
[46] Shenk A. Calculus and Analytic Geometry. Goodyear Publishing Co., Santa Monica, CA, 1977.
[47] Bernal L. and Sarohia V. Entrainment and mixing in thrust augmenting ejectors. AIAA Paper 83-0172, 1983. see also JPL report no. JPL D-66.
[48] Abramovich G. N. The Theory of Turbulent Jets. M.I.T. Press, Cambridge, Mass., 1963.
[49] Lund T. S., Tavella D. A., and Roberts L. Analysis of interacting dual lifting ejector systems. AIAA Paper 86-0478, 1986.
[50] Tollmien W. Berechnung turbulenter ausbreitungsvorgange. Z.A.M.M., 6:468478, 1926. English Translation N.A.C.A. TM 1085, 1945.
[51] Gortler H. Berechnung von aufgaben der freien turbulenz auf grund eines neuen naherungsansatzes. Z.A.M.M., 22:244-254, 1942.
[52] Newmann B. G. Turbulent wakes and jets in a pressure gradient. In Gino Sovran, editor, Fluid Mechanics of Internal Flows, Elsevier Publishing Co., 1967.
[53] Bevilaqua P. M. Lifting surface theory for thrust-augmenting ejectors. AIAA Journal, 16(5):475-481, 1987.
[54] Quinn B. A simple estimate of the effect of ejector length on thrust augmentation. Journal of Aircraft, 10(5):313-314, 1973.
[55] Anderson D. A., Tannehill J. C., and Pletcher R. H. Computational Fluid Mechanics and Heat Transfer. McGraw Hill, New York, 1984.
[56] Patankar S. V. Numerical Heat Transfer and Fluid Flow. Hemisphere, Washington D. C., 1980.
[57] Croft D. R. and Lilley D. G. Finite difference performance analysis of jet pumps. AIAA journal, 14(10), 1976.
[58] Gilbert G. B. and Hill P. G. Analysis and Testing of Two Dimensional Slot Nozzle Ejectors with Variable Area Mixing Sections. Technical Report CR2251, NASA, 1973.
[59] von Karman T. Uber laminare und tubulente reibung. Z.A.M.M., 1:233-252, 1921. English Translation NACA report no. 1092.
[60] Pohlhausen K. Naherungsweisen integration der differentialgleichung der laminaren reibungsschicht. Z.A.M.M., 1:252-268, 1921.
[61] Curtet R. Confined jets and recirculating phenomena with cold air. Combustion and Flame, 2, 1958.
[62] Hill P. Turbulent jets in ducted streams. Journal of Fluid Mechanics, 22, 1965. Part 1.
[63] Finlayson B. A. The Method of Weighted Residuals and Variational Principles. Academic Press, New York, 1972.
[64] Rajaratnam N. Turbulent Jets. Elsevier Scientific Publishing Co., New York, 1976.
[65] Gill P. E., Murray W., and Pitfield. The Implementation of two Revised QuasiNewton Algorithms for Unconstrained Optimization. Technical Report DNAC 11, National Physics Laboratory, Division of Numerical Analysis and Computing, 1972.
[66] Gill P. E., Murray W., and Wright M. H. Practical Optimization. Academic Press, London, 1981.
[67] Alperin M. and Wu J-J. Jet-Diffuser Ejector - Attached Nozzle Design. Technical Report CR 152361, NASA, 1980.

[^0]: ${ }^{1}$ A pair of spline fits is needed since in general the surface can not be described by y_{b} as a single-valued function of x_{b}.

[^1]: ${ }^{1}$ This fact may explain why previous investigators $[12,61]$ obtained reasonable results without explicitly enforcing the energy integral equation

