90 research outputs found

    Notch signaling in T cells is essential for allergic airway inflammation, but expression of the Notch ligands Jagged 1 and Jagged 2 on dendritic cells is dispensable

    Get PDF
    __Background:__ Allergic asthma is characterized by a TH2 response induced by dendritic cells (DCs) that present inhaled allergen. Although the mechanisms by which they instruct TH2 differentiation are still poorly understood, expression of the Notch ligand Jagged on DCs has been implicated in this process. __Objective:__ We sought to establish whether Notch signaling induced by DCs is critical for house dust mite (HDM)-driven allergic airway inflammation (AAI) in vivo. __Methods:__ The induction of Notch ligand expression on DC subsets by HDM was quantified by using quantitative real-time PCR. We used an HDM-driven asthma mouse model to compare the capacity of Jagged 1 and Jagged 2 single- and double-deficient DCs to induce AAI. In addition, we studied AAI in mice with a T cell-specific deletion of recombination signal-binding protein for immunoglobulin Jκ region (RBPJκ), a downstream effector of Notch signaling. __Results:__ HDM exposure promoted expression of Jagged 1, but not Jagged 2, on DCs. In agreement with published findings, in vitro-differentiated and HDM-pulsed Jagged 1 and Jagged 2 double-deficient DCs lacked the capacity to induce AAI. However, after in vivo intranasal sensitization and challenge with HDM, DC-specific Jagged 1 or Jagged 2 single- or double-deficient mice had eosinophilic airway inflammation and a TH2 cell activation phenotype that was not different from that in control littermates. In contrast, RBPJκ-def

    Panic results in unique molecular and network changes in the amygdala that facilitate fear responses

    Get PDF
    Recurrent panic attacks (PAs) are a common feature of panic disorder (PD) and post-traumatic stress disorder (PTSD). Several distinct brain regions are involved in the regulation of panic responses, such as perifornical hypothalamus (PeF), periaqueductal grey, amygdala and frontal cortex. We have previously shown that inhibition of GABA synthesis in the PeF produces panic-vulnerable rats. Here, we investigate the mechanisms by which a panic-vulnerable state could lead to persistent fear. We first show that optogenetic activation of glutamatergic terminals from the PeF to the basolateral amygdala (BLA) enhanced the acquisition, delayed the extinction and induced the persistence of fear responses 3 weeks later, confirming a functional PeF-amygdala pathway involved in fear learning. Similar to optogenetic activation of PeF, panic-prone rats also exhibited delayed extinction. Next, we demonstrate that panic-prone rats had altered inhibitory and enhanced excitatory synaptic transmission of the principal neurons, and reduced protein levels of metabotropic glutamate type 2 receptor (mGluR2) in the BLA. Application of an mGluR2 positive allosteric modulator (PAM) reduced glutamate neurotransmission in the BLA slices from panic-prone rats. Treating panic-prone rats with mGluR2 PAM blocked sodium lactate (NaLac)-induced panic responses and normalized fear extinction deficits. Finally, in a subset of patients with comorbid PD, treatment with mGluR2 PAM resulted in complete remission of panic symptoms. These data demonstrate that a panic-prone state leads to specific reduction in mGluR2 function within the amygdala network and facilitates fear, and mGluR2 PAMs could be a targeted treatment for panic symptoms in PD and PTSD patients

    Взаимовлияние валютного курса и платежного баланса в Украине

    Get PDF
    Цель статьи - выявить основные каналы взаимовлияния валютного курса и платежного баланса для определения наиболее подходящей модели валютного регулирования в Украине

    Tnfaip3 expression in pulmonary conventional type 1 Langerin‐expressing dendritic cells regulates T helper 2‐mediated airway inflammation in mice

    Get PDF
    BACKGROUND: Conventional type 1 dendritic cells (cDC1s) control antiviral and antitumor immunity by inducing antigen-specific cytotoxic CD8+ T-cell responses. Controversy exists whether cDC1s also control CD4+ T helper 2 (Th2) cell responses, since suppressive and activating roles have been reported. DC activation status, controlled by the transcription factor NF-κB, might determine the precise outcome of Th-cell differentiation upon encounter with cDC1s. To investigate the role of activated cDC1s in Th2-driven immune responses, pulmonary cDC1s were activated by targeted deletion of A20/Tnfaip3, a negative regulator of NF-κB signaling METHODS: To target pulmonary cDC1s, Cd207 (Langerin)-mediated excision of A20/Tnfaip3 was used, generating Tnfaip3fl/fl xCd207+/cre (Tnfaip3Lg-KO ) mice. Mice were exposed to house dust mite (HDM) to provoke Th2-mediated immune responses. RESULTS: Mice harboring Tnfaip3-deficient cDC1s did not develop Th2-driven eosinophilic airway inflammation upon HDM exposure, but rather showed elevated numbers of IFNγ-expressing CD8+ T-cells. In addition, Tnfaip3Lg-KO mice harbored increased numbers of IL-12-expressing cDC1s and elevated PD-L1 expression in all pulmonary DC subsets. Blocking either IL-12 or IFNγ in Tnfaip3Lg-KO mice restored Th2-responses, whereas administration of recombinant IFNγ during HDM sensitization in C57Bl/6 mice blocked Th2-development. CONCLUSIONS: These findings indicate that the activation status of cDC1s, shown by their specific expression of co-inhibitory molecules and cytokines, critically contributes to the development of Th2-cell-mediated disorders, most likely by influencing IFNγ production in CD8+ T-cells

    Group 2 innate lymphoid cells exhibit a dynamic phenotype in allergic airway inflammation

    Get PDF
    Group 2 innate lymphoid cells (ILC2) are implicated in allergic asthma as an early innate source of the type 2 cytokines IL-5 and IL-13. However, their induction in house dust mite (HDM)-mediated airway inflammation additionally requires T cell activation. It is currently unknown whether phenotypic differences exist between ILC2s that are activated in a T cell-dependent or T cell-independent fashion. Here, we compared ILC2s in IL-33-and HDM-driven airway inflammation. Using flow cytometry, we found that surface expression levels of various markers frequently used to identify ILC2s were dependent on their mode of activation, highly variable over time, and differed between tissue compartments, including bronchoalveolar lavage (BAL) fluid, lung, draining lymph nodes, and spleen. Whereas in vivo IL-33-activated BAL fluid ILC2s exhibited an almost uniform CD25+CD127+T1/ST2+ICOS+KLRG1+ phenotype, at a comparable time point after HDM exposure BAL fluid ILC2s had a very heterogeneous surface marker phenotype. A major fraction of HDM-activated ILC2s were CD25lowCD127+T1/ST2low ICOSlowKLRG1low, but nevertheless had the capacity to produce large amounts of type 2 cytokines. HDM-activated CD25low ILC2s in BAL fluid and lung rapidly reverted to CD25high ILC2s upon in vivo stimulation with IL-33. Genome-wide transcriptional profiling of BAL ILC2s revealed ~1,600 differentially expressed genes: HDM-stimulated ILC2s specifically expressed genes involved in the regulation of adaptive immunity through B and T cell interactions, whereas IL-33-stimulated ILC2s expressed high levels of proliferation-related and cytokine genes. In both airway inflammation models ILC2s were present in the lung submucosa close to epithelial cells, as identified by confocal microscopy. In chronic HDM-driven airway inflammation ILC2s were also found inside organized cellular infiltrates near T cells. Collectively, our findings show that ILC2s are phenotypically more heterogeneous than previously thought, whereby their surface marker and gene expression profile are highly dynamic

    Tnfaip3 expression in pulmonary conventional type 1 Langerin-expressing dendritic cells regulates T helper 2-mediated airway inflammation in mice

    Get PDF
    Background: Conventional type 1 dendritic cells (cDC1s) control anti-viral and anti-tumor immunity by inducing antigen-specific cytotoxic CD8+ T-cell responses. Controversy exists whether cDC1s also control CD4+ T helper 2 (Th2) cell responses, since suppressive and activating roles have been reported. DC activation status, controlled by the transcription factor NF-κB, might determine the precise outcome of Th-cell differentiation upon encounter with cDC1s. To investigate the role of activated cDC1s in Th2-driven immune responses, pulmonary cDC1s were activated by targeted deletion of A20/Tnfaip3, a negative regulator of NF-κB signaling. Methods: To target pulmonary cDC1s, Cd207 (Langerin)-mediated excision of A20/Tnfaip3 was used, generating Tnfaip3fl/flxCd207+/cre (Tnfaip3Lg-KO) mice. Mice were exposed to house dust mite (HDM) to provoke Th2-mediated immune responses. Results: Mice harboring Tnfaip3-deficient cDC1s did not develop Th2-driven eosinophilic airway inflammation upon HDM exposure, but rather showed elevated numbers of IFNγ-expressing CD8+ T cells. In addition, Tnfaip3Lg-KO mice harbored increased numbers of IL-12–expressing cDC1s and elevated PD-L1 expression in all pulmonary DC subsets. Blocking either IL-12 or IFNγ in Tnfaip3Lg-KO mice restored Th2 responses, whereas administration of recombinant IFNγ during HDM sensitization in C57Bl/6 mice blocked Th2 development. Conclusions: These findings indicate that the activation status of cDC1s, shown by their specific expression of co-inhibitory molecules and cytokines, critically contributes to the development of Th2 cell–mediated disorders, most likely by influencing IFNγ production in CD8+ T cells

    NADPH oxidase elevations in pyramidal neurons drive psychosocial stress-induced neuropathology

    Get PDF
    Oxidative stress is thought to be involved in the development of behavioral and histopathological alterations in animal models of psychosis. Here we investigate the causal contribution of reactive oxygen species generation by the phagocyte NADPH oxidase NOX2 to neuropathological alterations in a rat model of chronic psychosocial stress. In rats exposed to social isolation, the earliest neuropathological alterations were signs of oxidative stress and appearance of NOX2. Alterations in behavior, increase in glutamate levels and loss of parvalbumin were detectable after 4 weeks of social isolation. The expression of the NOX2 subunit p47phox was markedly increased in pyramidal neurons of isolated rats, but below detection threshold in GABAergic neurons, astrocytes and microglia. Rats with a loss of function mutation in the NOX2 subunit p47phox were protected from behavioral and neuropathological alterations induced by social isolation. To test reversibility, we applied the antioxidant/NOX inhibitor apocynin after initiation of social isolation for a time period of 3 weeks. Apocynin reversed behavioral alterations fully when applied after 4 weeks of social isolation, but only partially after 7 weeks. Our results demonstrate that social isolation induces rapid elevations of the NOX2 complex in the brain. Expression of the enzyme complex was strongest in pyramidal neurons and a loss of function mutation prevented neuropathology induced by social isolation. Finally, at least at early stages, pharmacological targeting of NOX2 activity might reverse behavioral alterations

    Linking personality to larval energy reserves in rainbow trout (Oncorhynchus mykiss).

    Get PDF
    There is a surging interest in the evolution, ecology and physiology of personality differences. However, most of the studies in this research area have been performed in adult animals. Trait variations expressed early in development and how they are related to the ontogeny of an animal's personality are far less studied. Genetic differences as well as environmental factors causing functional variability of the central serotonergic system have been related to personality differences in vertebrates, including humans. Such gene-environment interplay suggests that the central serotonergic system plays an important role in the ontogeny of personality traits. In salmonid fishes, the timing of emergence from spawning nests is related to energy reserves, aggression, and social dominance. However, it is currently unknown how the size of the yolk reserve is reflected on aggression and dominance, or if these traits are linked to differences in serotonergic transmission in newly emerged larvae. In this study we investigated the relationship between yolk reserves, social dominance, and serotonergic transmission in newly emerged rainbow trout (Oncorhynchus mykiss) larvae. This was conducted by allowing larvae with the same emergence time, but with different yolk sizes, to interact in pairs for 24 h. The results show that individuals with larger yolks performed more aggressive acts, resulting in a suppression of aggression in individuals with smaller yolks. A higher brain serotonergic activity confirmed subordination in larvae with small yolks. The relationship between social dominance and yolk size was present in siblings, demonstrating a link between interfamily variation in energy reserves and aggression, and suggests that larger yolk reserves fuel a more aggressive personality during the initial territorial establishment in salmonid fishes. Furthermore, socially naïve larvae with big yolks had lower serotonin levels, suggesting that other factors than the social environment causes variation in serotonergic transmission, underlying individual variation in aggressive behavior

    A pathophysiological role of PDE3 in allergic airway inflammation

    Get PDF
    Phosphodiesterase 3 (PDE3) and PDE4 regulate levels of cyclic AMP, which are critical in various cell types involved in allergic airway inflammation. Although PDE4 inhibition attenuates allergic airway inflammation,
    corecore