222 research outputs found

    More than money:developing an integrative multi-factorial measure of entrepreneurial success

    Get PDF
    This article conceptualises and operationalizes ‘subjective entrepreneurial success’ in a manner which reflects the criteria employed by entrepreneurs, rather than those imposed by researchers. Using two studies, a first qualitative enquiry investigated success definitions using interviews with 185 German entrepreneurs; five factors emerged from their reports: firm performance, workplace relationships, personal fulfilment, community impact, and personal financial rewards. The second study developed a questionnaire, the Subjective Entrepreneurial Success–Importance Scale (SES-IS), to measure these five factors using a sample of 184 entrepreneurs. We provide evidence for the validity of the SES-IS, including establishing systematic relationships of SES-IS with objective indicators of firm success, annual income and entrepreneur satisfaction with life and financial situation. We also provide evidence for the cross-cultural invariance of SES-IS using a sample of Polish entrepreneurs. The quintessence of our studies being that subjective entrepreneurial success is a multi-factorial construct, i.e. entrepreneurs value various indicators of success with money as only one possible option

    Further investigation of the role of HLA-DPB1 in adult Hodgkin's disease (HD) suggests an influence on susceptibility to different HD subtypes

    Get PDF
    It has been suggested in a number of studies that susceptibility to adult Hodgkin's disease (HD) is influenced by the HLA class II region, and specifically by alleles at the HLA-DPB1 locus. Since HD is diagnostically complex, it is not clear whether different HLA-DPB1 alleles confer susceptibility to different HD subtypes. To clarify this we have extended a previous study to type DPB1 alleles in 147 adult HD patients from a single centre. We have analysed patients with nodular sclerosing (NS), mixed cellularity (MC) or lymphocyte predominant (LP) HD, and gender in relation to HLA-DPB1 type, in comparison with 183 adult controls. The results confirmed previously reported associations of DPB1*0301 with HD susceptibility (relative risk (RR) = 1.42; 95% confidence interval (CI) 0.86-2.36) and DPB1*0201 with resistance to HD (RR = 0.49; CI 0.27-0.90). However, analysis by HD subtype and gender showed that *0301-associated susceptibility was confined to females with HD (RR = 2.46; CI 1.02-5.92), and *0201-associated resistance to females with NS-HD (RR = 0.28; CI 0.10-0.79). Susceptibility to NS-HD was also associated in females with *1001 (RR = 11.73; CI 1.32-104.36), and resistance with *1101 (RR = 0.08; CI 0.01-0.65). In contrast, susceptibility to LP-HD was associated in males with *2001 (RR = 32.14; CI 3.17-326.17), and to MC-HD with *3401 (RR = 16.78; CI 2.84-99.17). Comparison of DPB1-encoded polymorphic amino-acid frequencies in patients and controls showed that susceptibility to MC-HD was associated with Leucine at position 35 of DPB1 (RR = 8.85; CI 3.04-25.77), Alanine-55 (RR = 15.17; CI 2.00-115.20) and Valine-84 (RR = 15.94; CI 3.55-71.49). In contrast, Glutamic acid 69 was significantly associated with resistance to MC-HD (RR = 0.14; CI 0.03-0.60). Certain DPB1 alleles and individual DPbeta1 polymorphic amino acid residues may thus affect susceptibility and resistance to specific HD subtypes. This may be through their influence on the binding of peptides derived from an HD-associated infectious agent, and the consequent effect on immune responses to the agent

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Low levels of cathepsin D are associated with a poor prognosis in endometrial cancer

    Get PDF
    Total cytosolic cathepsin D (Cat D) levels were estimated by an immunoradiometric assay in a series of 156 consecutive patients with surgical stages I–III primary endometrial adenocarcinoma. Simultaneously, the tissue content of both oestrogen (ER) and progesterone (PR) receptors, and p185HER-2/neu, DNA content (ploidy), and the fraction of S-phase cells (S-phase) were also estimated. Tumoral Cat D content ranged from 0 to 243 pmol mg−1 protein (median 44 pmol mg−1 protein) and was not associated with any of the established clinicopathological and biological prognostic variables, with the exception of a weak positive correlation with the tumoral p185HER-2/neu levels. Univariable analysis performed on a subset of 97 patients, followed for a minimum of 2 years or until death, showed that patient age at diagnosis, high histological grade, advanced surgical stage, vascular invasion, positive peritoneal cytology, low levels of Cat D, negative ER and PR status, aneuploidy, and high S-phase were predictive of the presence of persistent or recurrent disease. However, multivariable analysis revealed that only histological grade, surgical stage, Cat D and PR were significantly associated with the patient's outcome. From these findings, we conclude that Cat D is an independent prognostic factor in endometrial adenocarcinoma, its low levels being associated with a worse clinical outcome. © 1999 Cancer Research Campaig

    Distinct Gene Number-Genome Size Relationships for Eukaryotes and Non-Eukaryotes: Gene Content Estimation for Dinoflagellate Genomes

    Get PDF
    The ability to predict gene content is highly desirable for characterization of not-yet sequenced genomes like those of dinoflagellates. Using data from completely sequenced and annotated genomes from phylogenetically diverse lineages, we investigated the relationship between gene content and genome size using regression analyses. Distinct relationships between log10-transformed protein-coding gene number (Y′) versus log10-transformed genome size (X′, genome size in kbp) were found for eukaryotes and non-eukaryotes. Eukaryotes best fit a logarithmic model, Y′ = ln(-46.200+22.678X′, whereas non-eukaryotes a linear model, Y′ = 0.045+0.977X′, both with high significance (p<0.001, R2>0.91). Total gene number shows similar trends in both groups to their respective protein coding regressions. The distinct correlations reflect lower and decreasing gene-coding percentages as genome size increases in eukaryotes (82%–1%) compared to higher and relatively stable percentages in prokaryotes and viruses (97%–47%). The eukaryotic regression models project that the smallest dinoflagellate genome (3×106 kbp) contains 38,188 protein-coding (40,086 total) genes and the largest (245×106 kbp) 87,688 protein-coding (92,013 total) genes, corresponding to 1.8% and 0.05% gene-coding percentages. These estimates do not likely represent extraordinarily high functional diversity of the encoded proteome but rather highly redundant genomes as evidenced by high gene copy numbers documented for various dinoflagellate species

    A review of combined advanced oxidation technologies for the removal of organic pollutants from water

    Get PDF
    Water pollution through natural and anthropogenic activities has become a global problem causing short-and long-term impact on human and ecosystems. Substantial quantity of individual or mixtures of organic pollutants enter the surface water via point and nonpoint sources and thus affect the quality of freshwater. These pollutants are known to be toxic and difficult to remove by mere biological treatment. To date, most researches on the removal of organic pollutants from wastewater were based on the exploitation of individual treatment process. This single-treatment technology has inherent challenges and shortcomings with respect to efficiency and economics. Thus, application of two advanced treatment technologies characterized with high efficiency with respect to removal of primary and disinfection by-products in wastewater is desirable. This review article focuses on the application of integrated technologies such as electrohydraulic discharge with heterogeneous photocatalysts or sonophotocatalysis to remove target pollutants. The information gathered from more than 100 published articles, mostly laboratories studies, shows that process integration effectively remove and degrade recalcitrant toxic contaminants in wastewater better than single-technology processing. This review recommends an improvement on this technology (integrated electrohydraulic discharge with heterogeneous photocatalysts) viz-a-vis cost reduction in order to make it accessible and available in the rural and semi-urban settlement. Further recommendation includes development of an economic model to establish the cost implications of the combined technology. Proper monitoring, enforcement of the existing environmental regulations, and upgrading of current wastewater treatment plants with additional treatment steps such as photocatalysis and ozonation will greatly assist in the removal of environmental toxicants

    Breast tumors from CHEK2 1100delC-mutation carriers: genomic landscape and clinical implications

    Get PDF
    Introduction: Checkpoint kinase 2 (CHEK2) is a moderate penetrance breast cancer risk gene, whose truncating mutation 1100delC increases the risk about twofold. We investigated gene copy-number aberrations and gene-expression profiles that are typical for breast tumors of CHEK2 1100delC-mutation carriers. Methods: In total, 126 breast tumor tissue specimens including 32 samples from patients carrying CHEK2 1100delC were studied in array-comparative genomic hybridization (aCGH) and gene-expression (GEX) experiments. After dimensionality reduction with CGHregions R package, CHEK2 1100delC-associated regions in the aCGH data were detected by the Wilcoxon rank-sum test. The linear model was fitted to GEX data with R package limma. Genes whose expression levels were associated with CHEK2 1100delC mutation were detected by the bayesian method. Results: We discovered four lost and three gained CHEK2 1100delC-related loci. These include losses of 1p13.3-31.3, 8p21.1-2, 8p23.1-2, and 17p12-13.1 as well as gains of 12q13.11-3, 16p13.3, and 19p13.3. Twenty-eight genes located on these regions showed differential expression between CHEK2 1100delC and other tumors, nominating them as candidates for CHEK2 1100delC-associated tumor-progression drivers. These included CLCA1 on 1p22 as well as CALCOCO1, SBEM, and LRP1 on 12q13. Altogether, 188 genes were differentially expressed between CHEK2 1100delC and other tumors. Of these, 144 had elevated and 44, reduced expression levels. Our results suggest the WNT pathway as a driver of tumorigenesis in breast tumors of CHEK2 1100delC-mutation carriers and a role for the olfactory receptor protein family in cancer progression. Differences in the expression of the 188 CHEK2 1100delC-associated genes divided breast tumor samples from three independent datasets into two groups that differed in their relapse-free survival time. Conclusions: We have shown that copy-number aberrations of certain genomic regions are associated with CHEK2 mutation 1100delC. On these regions, we identified potential drivers of CHEK2 1100delC-associated tumorigenesis, whose role in cancer progression is worth investigating. Furthermore, poorer survival related to the CHEK2 1100delC gene-expression signature highlights pathways that are likely to have a role in the development of metastatic disease in carriers of the CHEK2 1100delC mutation
    corecore