2,382 research outputs found

    A study to develop neutron activation for measuring bone calcium content

    Get PDF
    Neutron activation analysis for measuring calcium in monkey bone

    Observation of Strong Coulomb Blockade in Resistively Isolated Tunnel Junctions

    Full text link
    We report measurements of the Coulomb-blockade current in resistively isolated (R_{Isol} >> h/e^{2}) tunnel junctions for the temperature range 60mK WereportmeasurementsoftheCoulomb−blockadecurrentinresistivelyisolated(We report measurements of the Coulomb-blockade current in resistively isolated (R_{Isol}\gg h/e^{2})$ tunnel junctions for the temperature range 60mK < T < 230mK where the charging energy E_{c} is much greater than the thermal energy. A zero-bias resistance R_{0} of up to 10^{4}R_{T} (the tunnel resistance of the bare junction) is obtained. For eV << E_{c}, the I-V curves for a given R_{Isol} scale as a function of V/T, with I \propto V^{\alpha (R_{Isol})} over a range of V. The data agree well with numerical calculations of the tunneling rate that include environmental effects.Comment: 13 pages, 3 eps figure

    Flux amplification using stochastic superconducting quantum interference devices

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1063/1.114161.The flux change δ Φ through a bistable superconducting quantum interference device has been measured in the presence of thermally induced switching (with rate Γ) versus δ Φ x , the change in the applied flux. For small δ Φ x , δ Φ is proportional to δ Φ x with a measured flux gain g, depending on the temperature, barrier height, and frequency Ω, with a maximum of about 16. In agreement with theories of periodically driven stochastic bistable systems,g(Ω) is nearly frequency independent up to Γ and is proportional to Ω−1 for Ω≫Γ. For larger amplitude signals, harmonic generation has been measured in the adiabatic limit (Ω≪Γ) and found to be in good agreement with theory. Possible applications of this system for flux measurement are discussed

    Aluminum Oxide Layers as Possible Components for Layered Tunnel Barriers

    Full text link
    We have studied transport properties of Nb/Al/AlOx/Nb tunnel junctions with ultrathin aluminum oxide layers formed by (i) thermal oxidation and (ii) plasma oxidation, before and after rapid thermal post-annealing of the completed structures at temperatures up to 550 deg C. Post-annealing at temperatures above 300 deg C results in a significant decrease of the tunneling conductance of thermally-grown barriers, while plasma-grown barriers start to change only at annealing temperatures above 450 deg C. Fitting the experimental I-V curves of the junctions using the results of the microscopic theory of direct tunneling shows that the annealing of thermally-grown oxides at temperatures above 300 deg C results in a substantial increase of their average tunnel barriers height, from ~1.8 eV to ~2.45 eV, versus the practically unchanged height of ~2.0 eV for plasma-grown layers. This difference, together with high endurance of annealed barriers under electric stress (breakdown field above 10 MV/cm) may enable all-AlOx and SiO2/AlOx layered "crested" barriers for advanced floating-gate memory applications.Comment: 7 pages, 6 figure

    Observation of cascaded two-photon-induced transitions between fluxoid states of a SQUID

    Get PDF
    We present evidence for transitions between fluxoid wells of a SQUID due to cascaded, two-photon processes. Such transitions are evidenced by an anomalous dependence on the transition rate from the one-photon resonant level within the initial well, which cannot be explained by previously observed macroscopic resonant tunneling. These two-photon processes may be a significant source of decoherence in SQUlD qubits subject to microwave radiation

    Effect of Spin–Orbit Coupling on Phonon-Mediated Magnetic Relaxation in a Series of Zero-Valent Vanadium, Niobium, and Tantalum Isocyanide Complexes.

    Get PDF
    Spin-vibronic coupling leads to spin relaxation in paramagnetic molecules, and an understanding of factors that contribute to this phenomenon is essential for designing next-generation spintronics technology, including single-molecule magnets and spin-based qubits, wherein long-lifetime magnetic ground states are desired. We report spectroscopic and magnetic characterization of the isoelectronic and isostructural series of homoleptic zerovalent transition metal triad M(CNDipp)6 (M = V, Nb, Ta; CNDipp = 2,6-diisopropylphenyl isocyanide) and show experimentally the significant increase in spin relaxation rate upon going from V to Nb to Ta. Correlated electronic calculations and first principle spin–phonon computations support the role of spin–orbit coupling in modulating spin–phonon relaxation. Our results provide experimental evidence that increasing magnetic anisotropy through spin–orbit coupling interactions leads to increased spin–vibronic relaxation, which is detrimental to long spin lifetime in paramagnetic molecules
    • …
    corecore