21 research outputs found
Reduction in air pollution using the ‘basa njengo magogo’ method and the applicability to low-smoke fuels
The then Department of Minerals and Energy (DME) piloted the top-down Basa njengo Magogo alternative fire ignition method at Orange Farm dur-ing the winter of 2003. In total, 76% of households reported less smoke in their homes, while 67%reported less smoke in the streets after one month of using the method (Palmer Development Consulting, 2003). Work by Nova (Schoonraad & Swanepoel, 2003) in eMbalenhle (actual environ-mental tests) indicated up to a 60% reduction in smoke compared with the conventional method of bottom-up ignition. To support the findings of the environmental studies, the CSIR were appointed by the DME to conduct an experiment under con-trolled laboratory conditions to gather quantitative data on the reduction in particulate emissions asso-ciated with the Basa njengo Magogo method of lighting coal fires. The CSIR was further contracted to assess whether the Basa njengo Magogo technol-ogy was viable with low-smoke fuels.
The experiment was conducted using traditional D-Grade coal in both the conventional bottom-up and the Basa njengo Magogo ignition techniques. Three low volatile fuels were also assessed using the Basa njengo Magogo method namely:
• Anthracite (volatile content of 10.6%)
• Anthracite (volatile content of 12%)
• Low volatile coal (volatile content of 20.8%), from Slater Coal in Dundee.
All four fuels using the Basa njengo Magogo method recorded similar times of between 11 and 13 minutes from ignition to the fires reaching cook-ing temperature. The bottom-up fire for conven-tional D-Grade coal reached cooking temperature after 55 minutes.Particulate emissions from all the Basa njengo Magogo fires were similar and up to 92% lower in particulate emissions than that of the D-Grade coal in the bottom-up fire. SO2 emissions from the two D-Grade coal fires were the lowest and were identical. The highest SO2 emission resulted from the low volatile coal. The method of lighting the fire does not have a significant effect on the SO2 emissions. The Basa njengo Magogo method of ignition uses approximately 1 kg less coal to reach cooking temperature than the traditional bottom–up method. At a cost of approximately R1.00 per kilo-gram of coal, this translates into a cost savings of approximately R30 per month
Reduction in air pollution using the ‘basa njengo magogo’ method and the applicability to low-smoke fuels
The then Department of Minerals and Energy (DME) piloted the top-down Basa njengo Magogo alternative fire ignition method at Orange Farm dur-ing the winter of 2003. In total, 76% of households reported less smoke in their homes, while 67%reported less smoke in the streets after one month of using the method (Palmer Development Consulting, 2003). Work by Nova (Schoonraad & Swanepoel, 2003) in eMbalenhle (actual environ-mental tests) indicated up to a 60% reduction in smoke compared with the conventional method of bottom-up ignition. To support the findings of the environmental studies, the CSIR were appointed by the DME to conduct an experiment under con-trolled laboratory conditions to gather quantitative data on the reduction in particulate emissions asso-ciated with the Basa njengo Magogo method of lighting coal fires. The CSIR was further contracted to assess whether the Basa njengo Magogo technol-ogy was viable with low-smoke fuels.The experiment was conducted using traditional D-Grade coal in both the conventional bottom-up and the Basa njengo Magogo ignition techniques. Three low volatile fuels were also assessed using the Basa njengo Magogo method namely:• Anthracite (volatile content of 10.6%)• Anthracite (volatile content of 12%)• Low volatile coal (volatile content of 20.8%), from Slater Coal in Dundee.All four fuels using the Basa njengo Magogo method recorded similar times of between 11 and 13 minutes from ignition to the fires reaching cook-ing temperature. The bottom-up fire for conven-tional D-Grade coal reached cooking temperature after 55 minutes.Particulate emissions from all the Basa njengo Magogo fires were similar and up to 92% lower in particulate emissions than that of the D-Grade coal in the bottom-up fire. SO2 emissions from the two D-Grade coal fires were the lowest and were identical. The highest SO2 emission resulted from the low volatile coal. The method of lighting the fire does not have a significant effect on the SO2 emissions. The Basa njengo Magogo method of ignition uses approximately 1 kg less coal to reach cooking temperature than the traditional bottom–up method. At a cost of approximately R1.00 per kilo-gram of coal, this translates into a cost savings of approximately R30 per month
Carbon nanotube-enhanced photoelectrochemical properties of metallo-octacarboxyphthalocyanines
The photoelectrochemistry of metallo-octacarboxyphthalocyanines (MOCPc, where M = Zn or Si(OH)2) integrated with MWCNTs for the development of dye-sensitized solar cells (DSSCs) is reported. The DSSC performance (obtained from the photo-chronoamperometric and photo-impedimetric data) decreased as ZnOCPc > (OH)2SiOCPc. The incorporation of the MWCNTs on the surface of the TiO2 film (MOCPc–MWCNT systems) gave higher photocurrent density than the bare MOCPc complexes. Also, from the EIS results, the MOCPc–MWCNT hybrids gave faster charge transport kinetics (approximately three times faster) compared to the bare MOCPc complexes. The electron lifetime was slightly longer (ca. 6 ms) at the ZnOCPc systems than at the (OH)2SiOCPc system (ca. 4 ms) meaning that the presence of the MWCNTs on the surface of the TiO2 film did not show any significant improvement on preventing charge recombination process
3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial
Background:
Liraglutide 3·0 mg was shown to reduce bodyweight and improve glucose metabolism after the 56-week period of this trial, one of four trials in the SCALE programme. In the 3-year assessment of the SCALE Obesity and Prediabetes trial we aimed to evaluate the proportion of individuals with prediabetes who were diagnosed with type 2 diabetes.
Methods:
In this randomised, double-blind, placebo-controlled trial, adults with prediabetes and a body-mass index of at least 30 kg/m2, or at least 27 kg/m2 with comorbidities, were randomised 2:1, using a telephone or web-based system, to once-daily subcutaneous liraglutide 3·0 mg or matched placebo, as an adjunct to a reduced-calorie diet and increased physical activity. Time to diabetes onset by 160 weeks was the primary outcome, evaluated in all randomised treated individuals with at least one post-baseline assessment. The trial was conducted at 191 clinical research sites in 27 countries and is registered with ClinicalTrials.gov, number NCT01272219.
Findings:
The study ran between June 1, 2011, and March 2, 2015. We randomly assigned 2254 patients to receive liraglutide (n=1505) or placebo (n=749). 1128 (50%) participants completed the study up to week 160, after withdrawal of 714 (47%) participants in the liraglutide group and 412 (55%) participants in the placebo group. By week 160, 26 (2%) of 1472 individuals in the liraglutide group versus 46 (6%) of 738 in the placebo group were diagnosed with diabetes while on treatment. The mean time from randomisation to diagnosis was 99 (SD 47) weeks for the 26 individuals in the liraglutide group versus 87 (47) weeks for the 46 individuals in the placebo group. Taking the different diagnosis frequencies between the treatment groups into account, the time to onset of diabetes over 160 weeks among all randomised individuals was 2·7 times longer with liraglutide than with placebo (95% CI 1·9 to 3·9, p<0·0001), corresponding with a hazard ratio of 0·21 (95% CI 0·13–0·34). Liraglutide induced greater weight loss than placebo at week 160 (–6·1 [SD 7·3] vs −1·9% [6·3]; estimated treatment difference −4·3%, 95% CI −4·9 to −3·7, p<0·0001). Serious adverse events were reported by 227 (15%) of 1501 randomised treated individuals in the liraglutide group versus 96 (13%) of 747 individuals in the placebo group.
Interpretation:
In this trial, we provide results for 3 years of treatment, with the limitation that withdrawn individuals were not followed up after discontinuation. Liraglutide 3·0 mg might provide health benefits in terms of reduced risk of diabetes in individuals with obesity and prediabetes.
Funding:
Novo Nordisk, Denmark
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
Microwave-assisted optimization of the manganese redox states for enhanced capacity and capacity retention of LiAlxMn2-xO4 (x = 0 and 0.3) spinel materials
Please read abstract in article.CSIR and the NRFhttp://www.rsc.org/advancesam2017Chemistr
Heterodimetallic Ferrocenyl Dithiophosphonate Complexes of Nickel(II), Zinc(II) and Cadmium(II) as Sensitizers for TiO2-Based Dye-Sensitized Solar Cells
The formation, characterization, and dye sensitized solar cell application of nickel(II), zinc(II) and cadmium(II) ferrocenyl dithiophosphonate complexes were investigated. The multidentate monoanionic ligand [S2PFc(OH)]− (L1) was synthesized. The reaction between metal salt precursors and L1 produced Ni(II) complexes of the type [Ni{S2P(Fc)(OH)}2] (1) (molar ratio 1:2), and a tetranickel(II) complex of the type [Ni2{S2OP(Fc)}2]2 (2) (molar ratio (1:1). It also produced a Zn(II) complex [Zn{S2P(Fc)(OH)}2]2 (3), and a Cd(II) complex [Cd{S2P(Fc)(OH)}2]2 (4). Complexes 1–4 were characterized by 1H and 31P NMR, FTIR and elemental analysis, and complexes 1 and 2 were additionally analyzed by X-ray crystallography. The first examples of dye-sensitized solar cells (DSSCs) co-sensitized with ferrocenyl dithiophosphonate complexes 1–4 are reported. Co-sensitization with the ruthenium dye N719, produced the dye materials (3)-N719 (η=8.30%) and (4)-N719 (η=7.78%), and they were found to have a better overall conversion efficiency than the pure Ru N719 dye standard (η=7.14%) under the same experimental conditions. The DSSCs were characterized using UV/vis, cyclic voltammetry, electrochemical impedance spectroscopy (EIS), photovoltaic- (I−V curves), and performing incident photon-to-current efficiency (IPCE) measurements
Carbon nanotube-enhanced photoelectrochemical properties of metallo-octacarboxyphthalocyanines
The photoelectrochemistry of metallo-octacarboxyphthalocyanines (MOCPc, where M = Zn or Si(OH)2) integrated with MWCNTs for the development of dye-sensitized solar cells (DSSCs) is reported. The DSSC performance (obtained from the photo-chronoamperometric and photo-impedimetric data) decreased as ZnOCPc > (OH)2SiOCPc. The incorporation of the MWCNTs on the surface of the TiO2 film (MOCPc–MWCNT systems) gave higher photocurrent density than the bare MOCPc complexes. Also, from the EIS results, the MOCPc–MWCNT hybrids gave faster charge transport kinetics (approximately three times faster) compared to the bare MOCPc complexes. The electron lifetime was slightly longer (ca. 6 ms) at the ZnOCPc systems than at the (OH)2SiOCPc system (ca. 4 ms) meaning that the presence of the MWCNTs on the surface of the TiO2 film did not show any significant improvement on preventing charge recombination process.Original publication is available at http://dx.doi.org/10.1007/s10853-013-7710-
Carbon nanotube-enhanced photoelectrochemical properties of metallo-octacarboxyphthalocyanines
The photoelectrochemistry of metallo-octacarboxyphthalocyanines (MOCPc, where M = Zn or Si(OH)2) integrated with MWCNTs for the development of dye-sensitized solar cells (DSSCs) is reported. The DSSC performance (obtained from the photo-chronoamperometric and photo-impedimetric data) decreased as ZnOCPc > (OH)2SiOCPc. The incorporation of the MWCNTs on the surface of the TiO2 film (MOCPc–MWCNT systems) gave higher photocurrent density than the bare MOCPc complexes. Also, from the EIS results, the MOCPc–MWCNT hybrids gave faster charge transport kinetics (approximately three times faster) compared to the bare MOCPc complexes. The electron lifetime was slightly longer (ca. 6 ms) at the ZnOCPc systems than at the (OH)2SiOCPc system (ca. 4 ms) meaning that the presence of the MWCNTs on the surface of the TiO2 film did not show any significant improvement on preventing charge recombination process.Original publication is available at http://dx.doi.org/10.1007/s10853-013-7710-
Heterodimetallic Ferrocenyl Dithiophosphonate Complexes of Nickel(II), Zinc(II) and Cadmium(II) as Sensitizers for TiO 2
The formation, characterization, and dye sensitized solar cell application of nickel(II), zinc(II) and cadmium(II) ferrocenyl dithiophosphonate complexes were investigated. The multidentate monoanionic ligand [S2PFc(OH)]− (L1) was synthesized. The reaction between metal salt precursors and L1 produced Ni(II) complexes of the type [Ni{S2P(Fc)(OH)}2] (1) (molar ratio 1:2), and a tetranickel(II) complex of the type [Ni2{S2OP(Fc)}2]2 (2) (molar ratio (1:1). It also produced a Zn(II) complex [Zn{S2P(Fc)(OH)}2]2 (3), and a Cd(II) complex [Cd{S2P(Fc)(OH)}2]2 (4). Complexes 1–4 were characterized by 1H and 31P NMR, FTIR and elemental analysis, and complexes 1 and 2 were additionally analyzed by X-ray crystallography. The first examples of dye-sensitized solar cells (DSSCs) co-sensitized with ferrocenyl dithiophosphonate complexes 1–4 are reported. Co-sensitization with the ruthenium dye N719, produced the dye materials (3)-N719 (η=8.30%) and (4)-N719 (η=7.78%), and they were found to have a better overall conversion efficiency than the pure Ru N719 dye standard (η=7.14%) under the same experimental conditions. The DSSCs were characterized using UV/vis, cyclic voltammetry, electrochemical impedance spectroscopy (EIS), photovoltaic- (I−V curves), and performing incident photon-to-current efficiency (IPCE) measurements