8 research outputs found

    Dissecting Calcific Aortic Valve Disease—The Role, Etiology, and Drivers of Valvular Fibrosis

    Get PDF
    Calcific aortic valve disease (CAVD) is a highly prevalent and progressive disorder that ultimately causes gradual narrowing of the left ventricular outflow orifice with ensuing devastating hemodynamic effects on the heart. Calcific mineral accumulation is the hallmark pathology defining this process; however, fibrotic extracellular matrix (ECM) remodeling that leads to extensive deposition of fibrous connective tissue and distortion of the valvular microarchitecture similarly has major biomechanical and functional consequences for heart valve function. Significant advances have been made to unravel the complex mechanisms that govern these active, cell-mediated processes, yet the interplay between fibrosis and calcification and the individual contribution to progressive extracellular matrix stiffening require further clarification. Specifically, we discuss (1) the valvular biomechanics and layered ECM composition, (2) patterns in the cellular contribution, temporal onset, and risk factors for valvular fibrosis, (3) imaging valvular fibrosis, (4) biomechanical implications of valvular fibrosis, and (5) molecular mechanisms promoting fibrotic tissue remodeling and the possibility of reverse remodeling. This review explores our current understanding of the cellular and molecular drivers of fibrogenesis and the pathophysiological role of fibrosis in CAVD

    High resolution monitoring of valvular interstitial cell driven pathomechanisms in procalcific environment using label-free impedance spectroscopy

    Get PDF
    IntroductionFibro-calcific aortic valve disease has high prevalence and is associated with significant mortality. Fibrotic extracellular matrix (ECM) remodeling and calcific mineral deposition change the valvular microarchitecture and deteriorate valvular function. Valvular interstitial cells (VICs) in profibrotic or procalcifying environment are frequently used in vitro models. However, remodeling processes take several days to weeks to develop, even in vitro. Continuous monitoring by real-time impedance spectroscopy (EIS) may reveal new insights into this process.MethodsVIC-driven ECM remodeling stimulated by procalcifying (PM) or profibrotic medium (FM) was monitored by label-free EIS. Collagen secretion, matrix mineralization, viability, mitochondrial damage, myofibroblastic gene expression and cytoskeletal alterations were analyzed.Results and DiscussionEIS profiles of VICs in control medium (CM) and FM were comparable. PM reproducibly induced a specific, biphasic EIS profile. Phase 1 showed an initial impedance drop, which moderately correlated with decreasing collagen secretion (r = 0.67, p = 0.22), accompanied by mitochondrial membrane hyperpolarization and cell death. Phase 2 EIS signal increase was positively correlated with augmented ECM mineralization (r = 0.97, p = 0.008). VICs in PM decreased myofibroblastic gene expression (p < 0.001) and stress fiber assembly compared to CM. EIS revealed sex-specific differences. Male VICs showed higher proliferation and in PM EIS decrease in phase 1 was significantly pronounced compared to female VICs (male minimum: 7.4 ± 4.2%, female minimum: 26.5 ± 4.4%, p < 0.01). VICs in PM reproduced disease characteristics in vitro remarkably fast with significant impact of donor sex. PM suppressed myofibroblastogenesis and favored ECM mineralization. In summary, EIS represents an efficient, easy-to-use, high-content screening tool enabling patient-specific, subgroup- and temporal resolution

    Dissecting Calcific Aortic Valve Disease—The Role, Etiology, and Drivers of Valvular Fibrosis

    No full text
    Calcific aortic valve disease (CAVD) is a highly prevalent and progressive disorder that ultimately causes gradual narrowing of the left ventricular outflow orifice with ensuing devastating hemodynamic effects on the heart. Calcific mineral accumulation is the hallmark pathology defining this process; however, fibrotic extracellular matrix (ECM) remodeling that leads to extensive deposition of fibrous connective tissue and distortion of the valvular microarchitecture similarly has major biomechanical and functional consequences for heart valve function. Significant advances have been made to unravel the complex mechanisms that govern these active, cell-mediated processes, yet the interplay between fibrosis and calcification and the individual contribution to progressive extracellular matrix stiffening require further clarification. Specifically, we discuss (1) the valvular biomechanics and layered ECM composition, (2) patterns in the cellular contribution, temporal onset, and risk factors for valvular fibrosis, (3) imaging valvular fibrosis, (4) biomechanical implications of valvular fibrosis, and (5) molecular mechanisms promoting fibrotic tissue remodeling and the possibility of reverse remodeling. This review explores our current understanding of the cellular and molecular drivers of fibrogenesis and the pathophysiological role of fibrosis in CAVD

    Dissecting Calcific Aortic Valve Disease—The Role, Etiology, and Drivers of Valvular Fibrosis

    No full text
    Calcific aortic valve disease (CAVD) is a highly prevalent and progressive disorder that ultimately causes gradual narrowing of the left ventricular outflow orifice with ensuing devastating hemodynamic effects on the heart. Calcific mineral accumulation is the hallmark pathology defining this process; however, fibrotic extracellular matrix (ECM) remodeling that leads to extensive deposition of fibrous connective tissue and distortion of the valvular microarchitecture similarly has major biomechanical and functional consequences for heart valve function. Significant advances have been made to unravel the complex mechanisms that govern these active, cell-mediated processes, yet the interplay between fibrosis and calcification and the individual contribution to progressive extracellular matrix stiffening require further clarification. Specifically, we discuss (1) the valvular biomechanics and layered ECM composition, (2) patterns in the cellular contribution, temporal onset, and risk factors for valvular fibrosis, (3) imaging valvular fibrosis, (4) biomechanical implications of valvular fibrosis, and (5) molecular mechanisms promoting fibrotic tissue remodeling and the possibility of reverse remodeling. This review explores our current understanding of the cellular and molecular drivers of fibrogenesis and the pathophysiological role of fibrosis in CAVD

    Nuclear magnetic resonance spectroscopy to quantify major extracellular matrix components in fibro-calcific aortic valve disease

    No full text
    Abstract Fibro-calcific aortic valve disease (FCAVD) is a pathological condition marked by overt fibrous and calcific extracellular matrix (ECM) accumulation that leads to valvular dysfunction and left ventricular outflow obstruction. Costly valve implantation is the only approved therapy. Multiple pharmacological interventions are under clinical investigation, however, none has proven clinically beneficial. This failure of translational approaches indicates incomplete understanding of the underlying pathomechanisms and may result from a limited toolbox of scientific methods to assess the cornerstones of FCAVD: lipid deposition, fibrous and calcific ECM accumulation. In this study, we evaluated magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy to both, qualitatively and quantitatively assess these key elements of FCAVD pathogenesis. NMR spectra showed collagen, elastin, triacylglycerols, and phospholipids in human control and FCAVD tissue samples (n = 5). Calcification, measured by the hydroxyapatite content, was detectable in FCAVD tissues and in valve interstitial cells under procalcifying media conditions. Hydroxyapatite was significantly higher in FCAVD tissues than in controls (p < 0.05) as measured by 31P MAS NMR. The relative collagen content was lower in FCAVD tissues vs. controls (p < 0.05). Overall, we demonstrate the versatility of NMR spectroscopy as a diagnostic tool in preclinical FCAVD assessment
    corecore