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Calcific aortic valve disease (CAVD) is a highly prevalent and progressive disorder

that ultimately causes gradual narrowing of the left ventricular outflow orifice with

ensuing devastating hemodynamic effects on the heart. Calcific mineral accumulation

is the hallmark pathology defining this process; however, fibrotic extracellular matrix

(ECM) remodeling that leads to extensive deposition of fibrous connective tissue

and distortion of the valvular microarchitecture similarly has major biomechanical and

functional consequences for heart valve function. Significant advances have been made

to unravel the complex mechanisms that govern these active, cell-mediated processes,

yet the interplay between fibrosis and calcification and the individual contribution to

progressive extracellular matrix stiffening require further clarification. Specifically, we

discuss (1) the valvular biomechanics and layered ECM composition, (2) patterns

in the cellular contribution, temporal onset, and risk factors for valvular fibrosis, (3)

imaging valvular fibrosis, (4) biomechanical implications of valvular fibrosis, and (5)

molecular mechanisms promoting fibrotic tissue remodeling and the possibility of reverse

remodeling. This review explores our current understanding of the cellular and molecular

drivers of fibrogenesis and the pathophysiological role of fibrosis in CAVD.
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INTRODUCTION

Aortic valve stenosis (AS) is a devastating disorder characterized by progressive narrowing of
the aortic valve (AV) orifice and has a high prevalence (1) exceeding 2% in a population
≥75 years of age (2). AS is the leading cause for interventional or surgical heart valve therapy
(3). AV sclerosis, defined by leaflet thickening through extracellular matrix (ECM) expansion,
serves as a precursor for AS (4, 5). The rate of progression from AV sclerosis to AS is
elevated (6, 7); however, once any degree of stenosis is present, progression to severe stenosis is
common (8). Even early-stage AV sclerosis associates with increased cardiovascular morbidity and
mortality (9, 10), and recent clinical studies have suggested that intervention prior to late-stage
stenosis may improve overall cardiovascular outcomes (11–13). Myofibroblast activation, collagen
accumulation, proteoglycan degradation, and elastic fiber fragmentation represent the hallmark
processes underlying fibrotic valve remodeling leading to AV sclerosis. In addition, lipid and
lipoprotein accumulation, inflammatory cell infiltration, and tissue calcification are contributing
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pathomechanisms (5, 14–17). While tissue fibrosis plays a major
role in the initiation phase of calcific aortic valve disease (CAVD),
the differential contribution of fibrosis and calcification to late-
stage AS is less clear. This conundrum is exemplified by the larger
relative contribution of fibrosis to the same hemodynamically
defined degree of AS in women compared with men (18, 19).
Uncovering mechanisms promoting AV fibrosis has the potential
to lead to the development of therapeutic interventions targeting
the early stage of CAVD andmay address the need for sex-specific
treatment paths.

AV BIOMECHANICS AND ECM
COMPOSITION

Heart valve movement is passive, following blood pressure
changes in the cardiac chambers. The valvular structure is
uniquely designed to bend with its curvature, while restricting
bending against it (20). Physiological blood flow across the heart
valves is unidirectional. For the AV, the valve opens when left
ventricular (LV) pressure exceeds aortic pressure during systole
and closes when LV pressure falls below the aortic pressure
during diastole. The primary role of the AV is to prevent
backflow of blood into the LV during diastole, as this would
lead to ventricular volume overload. During diastole, a back
pressure of ∼80 mmHg acts on the 1-mm thick AV (21, 22).
The high valvular collagen content is the primary structural
element bearing this tensile force and shifts the load to the aortic
wall (21). When subjected to this pressure gradient, the leaflet’s
strain is anisotropic (i.e., different in circumferential and radial
directions) and reaches ∼25% in the radial direction and ∼10%
in the circumferential direction (23).

The AV’s ECM architecture is a fine-tuned, specialized
structure designed to withstand these extreme biomechanical
stresses across the span of a lifetime. During that time span, all
valves open and close ∼3 × 109 times, highlighting the valve’s
intrinsic ability to withstand mechanical fatigue by continual
ECM remodeling (24, 25). The AV is composed of three
layers perfectly adjusted to meet varying biomechanical needs: a
dense layer of stress-bearing, circumferentially oriented collagen
extending into the valvular supporting structures toward the
aortic outflow side (fibrosa layer, Figure 1A); a second elastin-
rich layer with sparce radially aligned collagen adjacent to the
inflow surface responsible for diastolic recoil and rapid closure
of the valve (ventricularis layer); and a third layer, the spongiosa,
situated in-between the other two layers having sponge-like,
shear-absorbing properties owing to its high glycosamino-
(GAG)- and proteoglycan content. It mediates and absorbs
the dynamic mechanical forces that the valve microstructure
endures during the cardiac cycle and provides resistance against
compressive forces (25).

Collagens are the major constituent of the AV’s ECM,
comprising 50% of dry weight (26) and are markedly increased in
fibrosis. Elastin is the second most prevalent protein comprising
13% of the AVs dry weight (26). Collagen type I (74%), type II
(24%), and type V (2%) are the most abundant collagens present
in the AV (25). Collagen fibers can be stretched but cannot

be compressed, whereas elastin fibers can stretch and contract
(21). Consequently, it seems obvious that alterations in ECM
composition affect valve biomechanics, but the contribution
of individual ECM components to AS remains incompletely
understood (27).

During systole, the ventricular side is passed by the laminar
blood flow jet as it exits the valve at a velocity of ∼1 m/s
creating shear stress peaking at 60–80 dyn/cm2 (28). In contrary,
on the fibrosa side, turbulent, oscillatory flow creates a low
shear environment peaking at diastole (15–20 dyn/cm2) (22,
29). However, one study suggested mostly unidirectional, non-
oscillatory shear stress on the aortic side of the valve due to
sinus vortices (29). These vorticesmay not develop when diastolic
coronary blood flow is present (30). Shear stresses are lowest on
the fibrosa side of the non-coronary leaflet due to the lack of
diastolic coronary flow (4), and interestingly, the non-coronary
leaflet has the highest susceptibility to calcification (4).

PATTERNS IN THE CELLULAR
CONTRIBUTION, TEMPORAL ONSET, AND
RISK FACTORS FOR VALVULAR FIBROSIS

Cellular Heterogeneity
The AV layer architecture is dramatically dependent on
specialized cells that generate and maintain the ECM
components. The AV is populated by two major cell types:
valvular endothelial cells (VECs) that line the aortic and
ventricular border of the AV and valvular interstitial cells (VICs)
that regulate the ECM and maintain homeostasis (31, 32). VICs
are positive for the mesenchymal lineage marker vimentin
(VIM) (31, 33). VECs carry the markers PECAM1 (CD31) and
VWF (34).

Three major VIC phenotypes exist: (i) quiescent VICs
that associate with low ECM remodeling, (ii) activated
myofibroblastic VICs that trigger profound ECM remodeling,
and (iii) osteoblastic VICs that contribute to ECMmineralization
(35). In normal heart valves, the majority of VICs are quiescent
(∼90%), and the rate of myofibroblastic VICs is <10% (31, 36).
Myofibrogenesis is a hallmark process in valvular heart disease
(37), and the proportion of myofibroblastic VICs dramatically
increases under pathological conditions (33).

Myofibroblastic VIC activation is characterized by the
expression of α-smooth muscle actin (α-SMA) and its
organization in contractile stress fibers (31, 32, 38). α-SMA
enables these cells to contract and migrate. Myofibroblastic
VICs are further characterized by their central role in
ECM remodeling, as they synthesize ECM components and
remodeling enzymes [matrix metalloproteinases (MMPs), most
predominantly MMP-2], tissue inhibitors of metalloproteinases
(TIMPs), and cathepsins (35, 39). Under physiological
conditions, myofibroblast activation is terminated by apoptosis
and de-differentiation to a quiescent state (37). Osteoblastic
VICs appear to generate from a myofibroblast state (38).

Novel evidence suggests that beyond these classical valve
cell populations, a broad array of additional specialized cells
contribute to the heterogeneous cellular environment of the
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FIGURE 1 | Structural and histological changes in calcific aortic valve disease (CAVD). (A) The native aortic valve (AV) has three distinct extracellular matrix (ECM)

layers: the fibrosa (yellow), the spongiosa (turquoise), and the ventricularis (dark yellow). VICs in the spongiosa layer express GFAP (48). (B) Disease initiation in CAVD

is marked by fibrotic ECM expansion and disarray in the fibrosa layer. (C) Disease progression is sex-dependent: a more profibrotic phenotype in women and a more

procalcific phenotype in men. Movat staining: yellow, collagen; turquoise, proteoglycans; dark purple, calcification. Scale bars indicate 100µm. GFAP, glial fibrillary

acidic protein. GAG, glycoaminoglycans; PG, proteoglycans; XX, female; XY, male.

AV. In a single-cell RNA sequencing (scRNA-seq) analysis, cells
were defined as VICs if COL1A1 and COL3A1 expression was
present (40). The majority of cells, however, were categorized
as valve-derived stromal cells (VDSCs), as they failed to
match previously identified VEC and VIC markers (40). Of
note, the prototypical mesenchymal lineage and VIC marker
vimentin (VIM) (31, 33) was not considered in this analysis,
potentially underscoring the rate of heterogeneity within the
VIC population, as collagen expression may primarily represent
myofibroblastic activation (41).

VECs are essential for valvular homeostasis and structural
integrity (42), shielding the valvular ECM and VICs from
cells (e.g. immune cells) and signaling molecules in the
blood stream and from hemodynamic forces. By means
of endothelial-to-mesenchymal transdifferentiation (EndMT),
VECs contribute to the VIC population especially during
embryogenesis (43). However, this process still plays a role
in valve homeostasis and disease during postnatal and adult
life (42, 44, 45). As the resident VIC population can prevent
VEC EndMT (42), it was suggested that VEC subpopulations
could act as a reservoir for VIC replenishment (44) when
the reduction in vital VICs indicates it (46). Moreover, VECs
were shown to undergo osteogenic differentiation promoting
calcium deposition in vitro (42). Osteogenic differentiation
potential was also shown for mitral VECs (47). Of note, EndMT
leading to a myofibroblastic phenotype appears to precede
differentiation of VECs to an osteoblastic phenotype (42),
suggesting that VECs may actively contribute to sclerosis and

calcification of the valve in addition to their protective role as
a barrier against the invasion of pathological mediators into the
valvular interstitium.

The high level of cellular heterogeneity is also signified by
the identification of cellular markers that reflect the layered
architecture of the AV. As such, glial fibrillary acidic protein
(GFAP) was identified as a unique marker of VICs from
the spongiosa layer (48). Furthermore, in fibrotic AV tissues,
enrichment of GFAP RNA and protein expression were noted
(48). These findings point toward an active role of these
spongiosa VICs in AV remodeling and fibrosis generation.
This is underpinned by the observation that the largest
increase in collagen fiber number in CAVD/AS occurs in the
spongiosa layer (49). The highest abundance of α-SMA protein
expression representative for myofibroblastic VICs was noted
in the ventricularis AV layer (48) that matches with side-
dependent mechanobiological responses in VICs as previously
shown (50). Side-dependent differences in gene expression
profiles were also observed in VECs (51, 52). Interestingly,
the side dependency extends to the cellular orientation of
VECs, which were shown to align with the underlying
collagen architecture (53).

Temporal Onset (Initiation and Progression
of Sclerosis and Fibrosis)
Early on, the focus in CAVD research shifted from the
perception of AS as an unmodifiable condition to underlying
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modifiable active disease processes (5). Aortic valve thickening
(sclerosis) represents an initial feature of the CAVD spectrum
(Figure 1B). The prevalence of AV sclerosis follows a linear
relationship with age (10). In study populations <60 years
of age, AV sclerosis is infrequent (<10%) (10). However, the
proportion increases, exceeding 50% in those 80 years and older
(10). Histopathologically, these early sclerotic lesions, primarily
located in the base region on the aortic side of the leaflet, are
characterized by lipid and inflammatory cell infiltration and ECM
expansion (4, 5). ECM remodeling is facilitated by proteolytic
enzymes (54) from macrophages and myofibroblasts as well as
synthesis of ECM components (55, 56).

Maintenance of collagen homeostasis is crucial for valve
function (27). In fibrotic wound healing, alterations in synthesis
vs. catabolism of the ECM regulate the net increase or decrease
in collagen (57). When synthesis of collagen by myofibroblasts
exceeds the rate at which it is degraded, the total amount of
collagen increases over time and fibrosis occurs (58). Collagen
synthesis is elevated in myofibroblastic VICs (41). In the
native valve, net collagen content increases with age (59),
but the collagen protein fraction decreases with age (60),
as other non-collagenous ECM proteins like proteoglycans
(biglycan, decorin, osteoglycin) and the glycoprotein fibronectin
1 increase in abundance in parallel (48). Collagen de novo
synthesis is counteracted by collagen-degrading proteolytic
enzymes. Among these, metalloproteinases and cathepsins are
the major proteolytic enzyme classes (33, 61–63). Ensuing
collagen fragmentation and degradation compromises the AV’s
structural integrity in the same way that exceeding synthesis
does. GAGs are involved in CAVD (64–69); however, their
degree of contribution to fibrosis remains unclear. Progression
to advanced and hemodynamically severe aortic stenosis is
hallmarked by the emergence of large calcific nodules and a
net loss of collagen relative to the total ECM protein (41).
It is important to note that the role of fibrosis in altering
aortic valve biomechanics during disease progression remains
unclear. Previous studies have suggested that fibrosis precedes
calcification in CAVD and stiffens the leaflets at early stages. As
noted, fibrosis may serve as the predominant pathological feature
in women with AS. Future studies are needed to delineate the
relative contribution of fibrosis and calcific minerals in changing
aortic valve biomechanics during disease progression. This may
require the advent of animal models that better recapitulate the
progression of the human disease, as the analysis of the entire
CAVD pathological spectrum in human samples is limited by
sample accessibility.

AV Sclerosis Risk Factors, the Profibrotic
AS Phenotype in Women, and a Special
Role of Fibrosis in Bicuspid Aortic Valve
Disease
An array of risk factors specifically for AV sclerosis exist.
Older age, male sex, smoking, and arterial hypertension
were identified as independent predictors of AV sclerosis in
the Cardiovascular Health Study (70). Higher levels of the
atherogenic lipoprotein a [lp(a)] also relate to AV sclerosis (71).

One study suggested an association of serum total cholesterol
levels >200 mg/dl, hypertension, diabetes mellitus, and serum
high density cholesterol levels <35 mg/dl with calcified or
thickened aortic leaflets or root (72). Higher serum phosphate
levels within the normal range were associated with AV sclerosis
(73). Light to moderate alcohol consumption was associated with
lower odds of AV sclerosis (74). AV sclerosis itself is a risk factor
associated with adverse cardiovascular outcomes (9, 10, 75).

In women, severe disease based on fibrotic degeneration
is more frequently observed than the calcific phenotype that
predominates in men (19), suggesting that rather than the typical
paradigm of a profibrotic remodeling progressing to calcification,
female valve disease may result from a continuation of collagen
accumulation (Figure 1C). Stenotic aortic valves explanted from
women show less calcification and denser connective tissue
characteristic of fibrosis than valves from men regardless of
age and phenotype (bicuspid vs. tricuspid) (18). Importantly,
biological sex appears to play a major role in VIC gene
expression and biology (76, 77). In vitro, male VICs showed
a higher alkaline phosphatase content and higher propensity
for calcification (76). Sex-specific features and mechanisms in
CAVD have been reviewed extensively before (78, 79). Of note,
most reports focus on calcification as the primary outcome,
and little is known about sex-dependent differential effects
on fibrosis. In cell culture experiments using cultivated rat
VICs, male VICs produced more collagen I, GAG, MMP2,
and alkaline phosphatase and showed higher calcific nodule
size and calcified area. However, VIC proliferation rate was
significantly higher in female porcine and rat VICs (76).
In a microarray-based analysis on porcine VICs, VICs from
women were less likely to express molecular signatures related
to proliferation, inflammation, and apoptosis (77). These two
analyses provide a differing signal toward cellular proliferation
(76, 77). While results from in vivo and in vitro analysis may
vary, the observed differences in vitro could relate to serum-
free cell culture conditions. In a biomarker study in humans,
women had a higher propensity for biomarkers representing
fibrosis and men for biomarkers signifying inflammation and
calcification (80). The PI3K/Akt signaling pathway has been
shown to play a sex-specific role in human VICs, leading to
increased calcification when inhibited (81). The secretion of the
two profibrotic interleukins (ILs) IL-6 and IL-8 was elevated in
VICs from men relative to VICs from women after interferon-α
and lipopolysaccharide treatment (81). Another study reported
a more robust activation of extracellular signal-regulated kinases
(ERKs) and hypoxia-inducible factor-alpha (HIF-1α) via signal
transducer and activator of transcription-1 (STAT-1) pathways
in male human VICs (82). Interestingly, expression levels of the
ECM-degrading enzyme MMP-1 were elevated in male VICs
(82). The global phenotypic and transcriptional differences likely
are the result of a complex mix of intrinsic (chromosomal
complement) and extrinsic factors (sex hormones) (78).

Bicuspid aortic valve (BAV) disease is the most prevalent
congenital heart defect affecting ∼1–2% of the population
and frequently leads to early-onset CAVD and ensuing valve
degeneration (83, 84). The hemodynamic consequence may
either be regurgitation or stenosis (21). Bicuspid and tricuspid
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CAVD share fibrosis and calcification as disease-defining
processes (18). Differences in fibrotic tissue composition and
calcification between BAVs and TAVs primarily were evident
within male or female sexes (18). Aortic valve calcification
density as determined by computed tomography (CT) was
significantly higher in older men (i.e. >60 years) with BAV than
men with TAV and younger men with BAV (18). No significant
differences were observed for the percentage of dense connective
tissue and collagen fibers as markers of fibrosis between BAVs
and TAVs (18). However, another histological study reported a
higher grade of valvular fibrosis in stenotic BAVs vs. TAVs (85).
On themolecular level, the ECM-degrading proteaseMMP-2 was
shown to have higher expression levels in BAVs than TAVs (86).
Strikingly, in all congenital semilunar valve disease, including
BAV, the layered valve microstructure is disrupted (87). The ECM
disorganization, increased ECM production, and VIC disarray
likely is the result of defective developmental programs resulting
in tissue fibrosis (88).

IMAGING VALVULAR FIBROSIS

Given the noted sex-dependent differences and clinical data
suggesting improved outcomes with earlier intervention,
modalities are needed to diagnose early-stage aortic valve
remodeling. Detection of tissue fibrosis in the AV, however,
remains a challenge. The early lesion of CAVD, AV sclerosis,
can be detected by echocardiography (10, 89) and CT as
leaflet thickening, indicating fibrotically remodeled AV tissue.
Transthoracic echocardiography is the cornerstone imaging
modality to assess valvular morphology and function and to
grade AS severity. Temporal resolution is high and the spatial
resolution allows for the detection of leaflet thickening and
macrocalcification. Due to the superior acoustic window,
transesophageal echocardiography may be used to characterize
calcification distribution (90). However, assessment of ECM
composition and microcalcification is constrained by limited
spatial resolution in both modalities. CT is the primary imaging
modality to assess calcification burden (90–92), owing to its
excellent spatial resolution and high discriminatory power to
detect calcification (92) but not other tissue components. Direct
evaluation of tissue changes would be the ideal diagnostic tool to
monitor disease development and progression and to determine
end points for evaluation of therapeutic interventions (93).
Molecular probes for the imaging of fibrosis are under clinical
investigation (94). However, they have not been evaluated
for the assessment of valvular fibrosis. Both inflammation
and developing calcification can be detected through positron
emission tomography (PET)-CT (95), and PET-CT may be able
to detect microcalcifications (96).

BIOMECHANICAL CONSEQUENCES OF
VALVULAR FIBROSIS

The valvular microenvironment is defined by a complex
interplay of the layer structure, ECM composition, cells, cellular
differentiation states, and secretory profile of specific cell

types. All these elements are subject to dynamic, high-velocity
forces that the AV endures. ECM stiffness is defined by ECM
composition, plays a pivotal role in this microenvironment,
and defines force transmission from the ECM to the cells
and the interaction of cells with the ECM (97). As ECM
composition varies across the valve layers, so does tissue stiffness.
Tissue stiffness therein defines the extent of resistance to
deformation. The onset of tissue fibrosis dramatically alters
mechanical properties.

The fibrosa layer is on average two times stiffer than the
ventricularis (98, 99) and the spongiosa (100). In addition,
focal regions in the fibrosa are stiffer than any part of the
ventricularis (98). AV stiffness increases with age and correlates
with collagen content (59). Perturbation of this fine-tuned system
leads to inhomogeneous stress, and force distribution across the
valve leaflet and pathological positive feedback loops develop.
In these feedback loops, mechanosensitive cells like VICs
undergo myofibroblastic activation and contribute to increased
tissue stiffness and thickness (5) through elevated secretion
of disorganized collagen (41) and ECM-modifying proteases.
Matrix stiffness itself is sufficient to modulate VIC phenotypes
without further stimulation (101–103). When cultured on stiff
substrates, VICs express more α-SMA-positive stress fibers (36,
101, 103). The mechanosensitivity even extends to the level
of individual VIC cellular stiffness (24). VICs from left-sided
heart valves, residing in an environment with high transvalvular
pressures, have higher cellular stiffness compared to VICs from
the right-sided heart valves (24).

Myofibroblastic VICs can contract and thereby alter their
biomechanical milieu. The tension they exert on the ECM results
in an extensive ECM remodeling potential, exemplified by the
ability to realign extracellular fibronectin fibrils (104) and to
contract collagenous ECM (36). VIC contraction increases ECM
stiffness (105, 106). In addition, fibrotic ECM may provide less
shielding from external mechanical forces that may be exerted on
the VICs unabsorbed by the ECM.

MOLECULAR MECHANISMS OF
VALVULAR FIBROSIS AND POTENTIAL TO
REVERSE REMODELING

Initiation of Myofibroblast Activation
The myofibroblast is the key cellular mediator of fibrosis and,
when activated, serves as the primary collagen-producing cell
type (58). Myofibroblasts are found all over the body, and their
basic function and main characteristics are comparable (107–
110). Initially, tissue damage takes place because of mechanical
disruption or cell death in response to pathological conditions
(i.e., hypoxia or overload). As a result, local inflammation leads
to the secretion of cytokines, growth factors, and chemokines
like connective tissue growth factor 2 (109), receptor activator
of nuclear factor kappa B ligand (RANKL), tumor necrosis
factor alpha (TNFα) (111), or connective tissue growth factor
(CTGF) (112), resulting in the activation of local inactive cells
of mesenchymal or fibroblastoid origin (108). The best-known
and most potent master switch in myofibroblast differentiation
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is transforming growth factor beta 1 (TGFβ1). TGFβ1 induces
phosphorylation and subsequent translocation of Smad2/3 into
the nucleus where neo-expression of promyofibroblast genes is
induced. The most prominent neo-expressed marker is α-SMA.
Although α-SMA is not myofibroblast specific, its organization
in stress fiber-like bundles in vivo is key to the myofibroblast-
specific ability to contract the surrounding tissue (109). In
addition to the expression of α-SMA, the expression of dozens
of other proteins including cadherins, vimentin, fibronectin,
collagens, MMP, and TIMPs is increased in myofibroblasts. In
summary, mature myofibroblasts are characterized by altered
adhesion ability, the production of profibrotic mediators, and
active remodeling of the ECM surrounding them (113, 114).
Importantly, TGFβ1 and the TGFβ1 receptor are actively
expressed by mature myofibroblasts themselves. TGFβ1 is a
physiological component of ECM; thus, it is released during
myofibroblast-driven ECM remodeling (115). Consequently,
myofibroblasts activation amplifies itself and can easily
degenerate into a vicious cycle of TGFβ1-driven pathological
ECM hyperproduction. This finally results in tissue thickening
with dramatic consequences for the resident cell populations
and the mechanical tissue characteristics as outlined before.
Of note, targeting myofibroblastic activation may also reduce
calcification (38) given that TGFβ1-driven VIC myofibroblastic
differentiation may precede further differentiation to osteogenic
phenotypes (116).

Contribution of Other Signaling Pathways
in Myofibroblast Activation and Regulation
Besides TGFβ1 signaling, other signaling pathways were found
to be involved in VIC activation. Wnt/β-catenin signaling
has an important function in embryogenesis of the heart.
The reactivation of this signaling axis is thought to present
a pathomechanism, which, in combination with TGFβ1,
accelerates myofibroblasts differentiation. The interaction
between these pathways directly correlates with increased
extracellular stiffness (117). Extracellular stiffening also
induces other signaling cascades, including RhoC, ROCK1/2,
MEK/Erk1/2, and the translocation of myocardin-related
transcription factor-A (MRTFa) into the nucleus to induce the
expression of profibrotic CTGF (112).

VICs isolated from healthy aortic valves express toll-
like receptors (TLR2 and 4), which were described to
regulate the cellular inflammatory response, and the growth
factor neurotrophin 3, which was shown to maintain the
viability of existing neurons and to promote the growth and
differentiation of new neurons (115). Stimulation of TLR4 with
lipopolysaccharide activates the Akt and ERK1/2 pathway and
increases the expression of neurotrophin 3. This activation
subsequently results in VIC proliferation and increased collagen
3 and MMP9 production with implications for pathological
ECM remodeling (118).

C-type natriuretic peptide (CNP), expressed by VECs and
VICs, and the natriuretic peptide receptor 2 (NPR2) have
also been implied in CAVD pathogenesis as mediators of
myofibrogenesis and valvular fibrosis (119, 120). CNP increase

was found to inhibit myofibroblast activation in vitro (120). In
addition, in mice, it was shown that CNP signaling is mediated
via NPR2 and that the loss of this receptor resulted in fibrosis,
calcification, and aortic valve dysfunction (119).

Mutations in the receptor Notch1 were found to cause aortic
valve calcification, leading the field’s attention to this genetically
highly preserved signaling pathway (121).While Notch1 is widely
expressed throughout the body, mutation in humans and mice
resulted in bicuspid aortic valves or severe CAVD (122). Notch1
was found to control several profibrotic pathways in response to
altered shear stress (121). In zebrafish, Notch reactivation was
induced by valvular damage and was crucial for the regeneration
of the aortic valve (123).

Neo-Angiogenesis in Heart Valve Fibrosis
Regulation of neo-angiogenesis accompanies heart valve fibrosis
(124). While oxygen and nutrient requirement of resident cells
in healthy valves is mainly covered by diffusion, supply in
pathologically thickened tissue cannot sufficiently be maintained,
resulting in cellular starvation, and hypoxia. Thus, the induction
of blood vessel formation may be a feature of fibrotic remodeling.
Elements of the renin–angiotensin signaling system (RAS) are
modulators of angiogenesis and are expressed in the AV (125).
The local homeostasis of the RAS is disturbed in CAVD (126).
The gene expression of the angiotensin receptor 1 and of enzymes
involved in angiotensin maturation and signaling (prorenin,
renin, angiotensin converting enzyme, chymase, and cathepsin)
are altered relative to control valves during late stages of CAVD
(126). Importantly, apelin and the apelin receptor which are
thought to promote signaling opposing the angiotensin pathway,
were found to be upregulated during valve fibrosis (127).
Angiotensin II signaling was further shown to crosstalk with
TGFβ signaling involving canonical and non-canonical signaling
pathways (107). The regulation of pro- and antifibrotic effects of
elements of the RAS is complex and has been reviewed in detail
previously (125).

Epigenetics
Epigenetic mechanisms, namely, DNA methylation,
posttranslational histone modification, chromatin remodeling,
and differential expression of non-coding regulatory RNAs
(microRNAs and long non-coding RNAs), are also involved in
the initiation and progression of aortic valve fibrosis. This topic
was recently comprehensively described in a review by Gošev et
al. and will only be discussed very briefly and exemplarily here
(128). DNA (cytosine-5-)-methyltransferase 3 beta (DNMT3B)
activity was found significantly increased in dysfunctional aortic
valves. It was accompanied by a general increase in global DNA
methylation with more than 6000 altered methylation sites
(129). Importantly, deactivation of DNMT3B slowed aortic
stenosis progression (130). Histone deacetylases, which are
involved in chromatin remodeling, with important implication
for gene expression, were found to be regulated by shear stress.
Thus, regulation of deacetylases may translate site-specific flow
profile alterations in fibrotic heart valves into differential gene
expression (131). Meanwhile, numerous non-coding regulatory
RNAs were identified to be involved in the pathomechanisms
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in heart valve stenosis. More than 50 microRNAs that are up-
or downregulated in diseased aortic valves were described
(128, 132).

Regression of Fibrosis, Molecular Targets,
and Potential Pitfalls in Pharmaceutical
Interventions
Fibrotic disease is reversible to a certain point as was
described for liver cirrhosis (133) and pulmonary fibrosis
(134, 135). The regression of fibrosis requires elimination
of the initial triggering factors, degradation of excessive
ECM, and inactivation of myofibroblasts (108). In vivo,
myofibroblasts activity is counter-regulated by induction of
apoptosis, senescence, dedifferentiation, and reprogramming
(108, 110).

In vitro, myofibroblasts activation was reversed by
polyunsaturated fatty acids (136), statins (137, 138), C-type
natriuretic peptide (CNP) (120), fibroblast growth factor 2
(FGF2), and the FGF-receptor (139).

The recognition that TGFβ1 may mediate many of the
profibrotic remodeling responses within the AV has led to
a search for strategies to target this pathway. As TGFβ1 is
a key cytokine involved in a myriad of signaling cascades
throughout the body, direct targeting could result in deleterious
off-target effects. However, downstreammediators may represent
better targets. Exemplarily, TGFβ1 leads to an increase in the
atypical cell adhesion protein cadherin-11 in VICs (113, 140),
which was shown to mediate profibrotic responses in the lung
(141), myocardium (142), and the liver (143). Cadherin-11
overexpression also induced extracellular matrix remodeling and
calcification in murine AVs (144). Targeting cadherin-11 with
a blocking antibody prevented AV remodeling in Notch1+/−

mutant mice (145).
Pharmacotherapy for CAVD has not yet translated into

clinical practice. HMG-CoA inhibitors (statins) with their
pleiotropic effects on cardiovascular biology failed to alleviate
AS progression in major randomized controlled trials (RCTs).
Nevertheless, these results should be carefully interpreted. First,
it should be mentioned that these trials also included patients
with bicuspid valves BAVs (146, 147). Second, the RCTs analyzed
statin effects on an advanced disease stage. Given the fact that
statins suppress myofibroblastic VICs in vitro (137, 138), one
should assume that they can only impact on fibrosis. Fibrosis
plays a major role in early-stage CAVD and in women with AS.
Thus, statins may, however, be beneficial in the early treatment
of patients at CAVD risk, who did not yet manifest severe disease
(e.g., individuals with BAV or in women with AV sclerosis).
Interestingly, the myofibroblast inhibitory effect of CNP may
partially explain the statin effect, as statins were found to induce
CNP expression in VICs (120).

Valvular fibrosis and neo-angiogenesis are connected on a
functional and molecular basis as outlined above. Noteworthy,
the crosstalk between angiotensin II signaling and TGFβ
signaling can be inhibited using angiotensin receptor II
blocking medication. These drugs are commonly used to treat

hypertension, but in vitro Losartan also inhibited TGFβ signaling
on SMAD-induced profibrotic gene expression (114).

Studies in cardiac hypertrophy have shown that the
angiotensin II type 1 receptor colocalizes and requires the
presence of a specific serotonergic receptor, 5-HT2B, for
downstream signaling (148). Interestingly, an unintended
agonism of 5-HT2B resulted in severe valvulopathies in
patients prescribed a specific class of ergot-derived dopamine
agonists for Parkinson’s disease and the diet drug combination
Fenfluramine/Phentermine (149, 150). Studies showed that
5-HT2B agonism leads to VIC proliferation and myofibroblast
activation (151, 152). Consequently, these drugs were removed
from the market, and protocols within the National Institute
of Mental Health’s Psychoactive Drug Screening Program to
identify and prevent similar occurrences in the future were
established. The recognition that 5-HT2B can dramatically affect
AV structure motivated studies to assess the therapeutic potential
of targeting this receptor. Antagonism of 5-HT2B was found
to inhibit TGFβ1 signaling, including myofibroblast activation,
through non-canonical interactions and inhibition of p38MAPK
(151). Accordingly, genetic ablation of 5-HT2B improved AV
function in Notch1+/− mutant mice (153).

As mentioned before, TLRs and neutrophin 3 are involved in
myofibroblast activation (118). Neutrophin neutralization using
specific antibodies or inhibition of the downstream signaling
was shown to inhibit the activation in vitro; whether a clinical
application is thinkable needs to be evaluated. As Notch was
found to be a key switch in valvular repair, the idea was proposed
that artificially introduced changes in flow patterns on VECs in
dysfunctional valves may activate Notch and the associated valve
regeneration program (123).

For the sake of completeness, it needs to be mentioned that
lifestyle modifications were also debated in the context of CAVD.
Physical exercise was shown to attenuate early sclerotic lesion
development in an experimental CAVD model in vivo (154).
However, once lesions were established, exercise did not halt
the progression of AV sclerosis (155). Non-smokers who only
consumed low-to-moderate levels of alcohol were found to have
a lower incidence of aortic stenosis in a 15.3-year follow-up
study in 69,365 Swedish adults without cardiovascular disease
at baseline (156). Ten years after smoking cessation, the risk to
develop aortic stenosis was comparable to never smokers in this
study. The molecular processes that underpin these observations
remain widely elusive. However, the increase in cardio-
protective high-density lipoprotein cholesterol, apolipoprotein
A1, and adiponectin in light alcohol consumers (157) and the
induction of TGFβ1 through nicotine (158) were discussed as
causal mechanisms.

Outlook and Implications for the
Development of Pharmaceutical
Intervention
Fibrotic disease in the liver and lungs was shown to be
reversible (135, 159). However, the reversal of valvular fibrosis
may be more complicated because even mild alterations in
tissue composition have an immediate impact on tissue stiffness.
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The resulting elevated tissue stiffness will, in turn, provide
higher resistance to blood flow, leading to altered, turbulent
blood flow through the AV orifice. These fluid dynamics in
turn may further drive pathological valve remodeling through
mechanobiolological and inflammatory signaling. In addition,
advanced fibrosis is often hypocellular, and it has been suggested
that fibrosis becomes irreversible when the cellular mediators
(the source of MMPs) are no longer present to reshape the
ECM (160). Any intervention should thus occur early in the
disease process when cell to ECM ratio is more favorable.
In more progressed states, multiple targets may need to be
addressed to restore ECM composition: ECM structure and layer
microstructure concomitantly to reestablish physiological ECM
homeostasis. Furthermore, proinflammatory pathways activated
by high shear stress in severe AS may serve as valuable targets for
pharmacological therapeutic interventions (161).

In summary, there could be a point of no return in the
potential for reverse remodeling of the delicate layer architecture
of the AV. However, inhibition of valvular fibrosis may still prove
an attractive target, but a better understanding of fibrogenic AV
biology is warranted. Major advances have been made defining
the molecular contributors to the fibrotic CAVD stage using
high-throughput technologies (48, 162, 163). These technologies
and results will likely play a significant role in the discovery of
novel molecular pathways with the potential to specifically target
valvular fibrosis.

Importantly, there is mounting evidence that pathophysiology
in women with CAVD is defined by a more fibrotic phenotype,
while men are more prone to calcific AV disease. This finding
has implications for the design of trials on pharmacological
interventions in CAVD.

CONCLUSIONS

Further dissection of the complex fibrotic aspect of CAVD
pathobiology, considering the heterogeneous cellular
environment, specialized layer structure, valvular biomechanics,
and cellular mechanobiology, is needed to identify novel
therapeutic targets. Definition of myofibroblastic VIC-specific
markers or transcription factors may aid in the specific targeting
of valvular myofibrogenesis. High-throughput technologies
like scRNA-seq or single-nuclei RNA-seq will likely assist in
the discovery of molecular targets and regulatory mechanisms
that drive valvular fibrosis. Accounting for the sex-specific
fibrocalcific CAVD pathogenesis, sex-specific therapeutic
interventions may be warranted. Trials for therapeutic
pharmacological interventions should be stratified according
to underlying varying pathomechanisms. We expect that
therapeutic intervention in fibrosis has an optimal window of
opportunity that may be early in the course of the disease.
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