11 research outputs found

    Mass spectrometry vs immunofixation for treatment monitoring in multiple myeloma

    Get PDF
    Monitoring of the monoclonal protein (M-protein) by electrophoresis and/or immunofixation (IFE) has long been used to assess treatment response in multiple myeloma (MM). However, with the use of highly effective therapies, the M-protein becomes frequently undetectable, and more sensitive methods had to be explored. We applied IFE and mass spectrometry (EXENT&FLC-MS) in serum samples from newly diagnosed MM patients enrolled in the PETHEMA/GEM2012MENOS65 obtained at baseline (n = 223), and after induction (n = 183), autologous stem cell transplantation (n = 173), and consolidation (n = 173). At baseline, the isotypes identified with both methods fully matched in 82.1% of samples; in the rest but 2 cases, EXENT&FLC-MS provided additional information to IFE with regards to the M-protein(s). Overall, the results of EXENT&FLC-MS and IFE were concordant in >80% of cases, being most discordances due to EXENT&FLC-MS+ but IFE− cases. After consolidation, IFE was not able to discriminate 2 cohorts with different median progression-free survival (PFS), but EXENT&FLC-MS did so; furthermore, among IFE− patients, EXENT&FLC-MS identified 2 groups with significantly different median PFS (P = .0008). In conclusion, compared with IFE, EXENT&FLC-MS is more sensitive to detect the M-protein of patients with MM, both at baseline and during treatment, and provides a more accurate prediction of patients’ outcome. This trial was registered at www.clinicaltrials.gov as #NCT01916252.This study was supported by grants from the Centro de Investigacion Biomédica en Red–Area de Oncología–del Instituto de Salud Carlos III CIBERONC, CB16/12/00369, CB16/12/00400, CB16/12/00233, and CB16/12/00284, Instituto de Salud Carlos III/Subdireccion General de Investigaci on Sanitaria FIS no. PI15/ 01956, PI15/02049, PI15/02062, PI18/01709, PI18/01673, and PI19/01451, the Cancer Research UK, FCAECC, and AIRC under the Accelerator Award Program (EDITOR).Peer reviewe

    Genetic and phenotypic characterisation of HIV-associated aggressive B-cell non-Hodgkin lymphomas, which do not occur specifically in this population : diagnostic and prognostic implications

    Get PDF
    Altres ajuts: acord transformatiu CRUE-CSICAltres ajuts: Gilead Sciences S.L. (GLD19/00121); Josep Carreras International Foundation; "la Caixa" FoundationThe frequency of aggressive subtypes of B-cell non-Hodgkin lymphoma (B-NHL), such as high-grade B-cell lymphomas (HGBL) with MYC and BCL2 and/or BCL6 rearrangement (HGBL-DH/TH) or Burkitt-like lymphoma (BL) with 11q aberration, is not well known in the HIV setting. We aimed to characterise HIV-associated aggressive B-NHL according to the 2017 WHO criteria, and to identify genotypic and phenotypic features with prognostic impact. Seventy-five HIV-associated aggressive B-NHL were studied by immunohistochemistry (CD10, BCL2, BCL6, MUM1, MYC, and CD30), EBV-encoded RNAs (EBERs), and fluorescence in situ hybridisation (FISH) to evaluate the status of the MYC, BCL2, and BCL6 genes and chromosome 11q. The 2017 WHO classification criteria and the Hans algorithm, for the cell-of-origin classification of diffuse large B-cell lymphomas (DLBCL), were applied. In DLBCL cases, the frequencies of MYC and BCL6 rearrangements (14.9 and 27.7%, respectively) were similar to those described in HIV-negative patients, but BCL2 rearrangements were infrequent (4.3%). MYC expression was identified in 23.4% of DLBCL cases, and coexpression of MYC and BCL2 in 13.0%, which was associated with a worse prognosis. As for BL cases, the expression of MUM1 (30.4%) conferred a worse prognosis. Finally, the prevalence of HGBL-DH/TH and BL-like with 11q aberration are reported in the HIV setting. The phenotypic and genotypic characteristics of HIV-associated aggressive B-NHL are similar to those of the general population, except for the low frequency of BCL2 rearrangements in DLBCL. MYC and BCL2 coexpression in DLBCL, and MUM-1 expression in BL, have a negative prognostic impact on HIV-infected individuals

    Mass spectrometry vs immunofixation for treatment monitoring in multiple myeloma

    Get PDF
    This study was supported by grants from the Centro de Inves-tigación Biomédica en Red-Área de Oncología-del Instituto de Salud Carlos III CIBERONC, CB16/12/00369, CB16/12/00400, CB16/12/00233, and CB16/12/00284, Instituto de Salud Carlos III/Subdirección General de Investigación Sanitaria FIS no. PI15/ 01956, PI15/02049, PI15/02062, PI18/01709, PI18/01673, and PI19/01451, the Cancer Research UK, FCAECC, and AIRC under the Accelerator Award Program (EDITOR).Monitoring of the monoclonal protein (M-protein) by electrophoresis and/or immunofixation (IFE) has long been used to assess treatment response in multiple myeloma (MM). However, with the use of highly effective therapies, the M-protein becomes frequently undetectable, and more sensitive methods had to be explored. We applied IFE and mass spectrometry (EXENT&FLC-MS) in serum samples from newly diagnosed MM patients enrolled in the PETHEMA/GEM2012MENOS65 obtained at baseline (n 5 223), and after induction (n 5 183), autologous stem cell transplantation (n 5 173), and consolidation (n 5 173). At baseline, the isotypes identified with both methods fully matched in 82.1% of samples; in the rest but 2 cases, EXENT&FLC-MS provided additional information to IFE with regards to the M-protein(s). Overall, the results of EXENT&FLC-MS and IFE were concordant in.80% of cases, being most discordances due to EXENT&FLC-MS but IFE cases. After consolidation, IFE was not able to discriminate 2 cohorts with different median progression-free survival (PFS), but EXENT&FLC-MS did so; furthermore, among IFE patients, EXENT&FLC-MS identified 2 groups with significantly different median PFS (P 5.0008). In conclusion, compared with IFE, EXENT&FLC-MS is more sensitive to detect the M-protein of patients with MM, both at baseline and during treatment, and provides a more accurate prediction of patients' outcome. This trial was registered at www.clinicaltrials.gov as #NCT01916252

    Measurable Residual Disease by Next-Generation Flow Cytometry in Multiple Myeloma

    No full text
    [Purpose] Assessing measurable residual disease (MRD) has become standard with many tumors, but the clinical meaning of MRD in multiple myeloma (MM) remains uncertain, particularly when assessed by next-generation flow (NGF) cytometry. Thus, we aimed to determine the applicability and sensitivity of the flow MRD-negative criterion defined by the International Myeloma Working Group (IMWG).[Patients and methods] In the PETHEMA/GEM2012MENOS65 trial, 458 patients with newly diagnosed MM had longitudinal assessment of MRD after six induction cycles with bortezomib, lenalidomide, and dexamethasone (VRD), autologous transplantation, and two consolidation courses with VRD. MRD was assessed in 1,100 bone marrow samples from 397 patients; the 61 patients without MRD data discontinued treatment during induction and were considered MRD positive for intent-to-treat analysis. The median limit of detection achieved by NGF was 2.9 × 10−6. Patients received maintenance (lenalidomide ± ixazomib) according to the companion PETHEMA/GEM2014MAIN trial.[Results] Overall, 205 (45%) of 458 patients had undetectable MRD after consolidation, and only 14 of them (7%) have experienced progression thus far; seven of these 14 displayed extraosseous plasmacytomas at diagnosis and/or relapse. Using time-dependent analysis, patients with undetectable MRD had an 82% reduction in the risk of progression or death (hazard ratio, 0.18; 95% CI, 0.11 to 0.30; P < .001) and an 88% reduction in the risk of death (hazard ratio, 0.12; 95% CI, 0.05 to 0.29; P < .001). Timing of undetectable MRD (after induction v intensification) had no impact on patient survival. Attaining undetectable MRD overcame poor prognostic features at diagnosis, including high-risk cytogenetics. By contrast, patients with Revised International Staging System III status and positive MRD had dismal progression-free and overall survivals (median, 14 and 17 months, respectively). Maintenance increased the rate of undetectable MRD by 17%.[Conclusions] The IMWG flow MRD-negative response criterion is highly applicable and sensitive to evaluate treatment efficacy in MM

    Progression-free survival at 2 years post-autologous transplant: a surrogate end point for overall survival in follicular lymphoma

    No full text
    Overall survival (OS) is the gold-standard end point for studies evaluating autologous stem cell transplantation (ASCT) in follicular lymphoma (FL), but assessment may be elusive due to the lengthy disease course. We analyzed the validity of two earlier end points, proposed in the setting of first-line chemo-/immunotherapy, as surrogates for OSprogression-free survival (PFS) status at 24months (PFS24) and complete response at 30months (CR30) post-ASCT. We also have investigated the clinical features of patients with early progression after ASCT. Data were available for 626 chemosensitive FL patients who received ASCT between 1989 and 2007. Median follow-up was 12.2years from ASCT. In the PFS24 analysis, 153 (24%) patients progressed within 24months and 447 were alive and progression-free at 24months post-ASCT (26 who died without disease progressions within 24months were excluded). Early progression was associated with shorter OS (hazard ratio [HR], 6.8; P=0.00001). In the subgroup of patients who received an ASCT in the setting or relapse after being exposed to rituximab, the HR was 11.3 (95% CI, 3.9-30.2; P<0.00001). In the CR30 analysis, 183 of 596 (31%) response-evaluable patients progressed/died with 30months post-ASCT. The absence of CR30 was associated with shorter OS (HR, 7.8; P<0.00001), including in patients with prior rituximab (HR, 8.2). PFS24 and CR30 post-ASCT are associated with poor outcomes and should be primary end points. Further research is needed to identify this population to be offered alternative treatments

    Deep MRD profiling defines outcome and unveils different modes of treatment resistance in standard- and high-risk myeloma

    No full text
    PETHEMA/GEM Cooperative Group.Patients with multiple myeloma (MM) carrying standard- or high-risk cytogenetic abnormalities (CAs) achieve similar complete response (CR) rates, but the later have inferior progression-free survival (PFS). This questions the legitimacy of CR as a treatment endpoint and represents a biological conundrum regarding the nature of tumor reservoirs that persist after therapy in high-risk MM. We used next-generation flow (NGF) cytometry to evaluate measurable residual disease (MRD) in MM patients with standard- vs high-risk CAs (n = 300 and 90, respectively) enrolled in the PETHEMA/GEM2012MENOS65 trial, and to identify mechanisms that determine MRD resistance in both patient subgroups (n = 40). The 36-month PFS rates were higher than 90% in patients with standard- or high-risk CAs achieving undetectable MRD. Persistent MRD resulted in a median PFS of ∼3 and 2 years in patients with standard- and high-risk CAs, respectively. Further use of NGF to isolate MRD, followed by whole-exome sequencing of paired diagnostic and MRD tumor cells, revealed greater clonal selection in patients with standard-risk CAs, higher genomic instability with acquisition of new mutations in high-risk MM, and no unifying genetic event driving MRD resistance. Conversely, RNA sequencing of diagnostic and MRD tumor cells uncovered the selection of MRD clones with singular transcriptional programs and reactive oxygen species–mediated MRD resistance in high-risk MM. Our study supports undetectable MRD as a treatment endpoint for patients with MM who have high-risk CAs and proposes characterizing MRD clones to understand and overcome MRD resistance. This trial is registered at www.clinicaltrials.gov as #NCT01916252

    Large T cell clones expressing immune checkpoints increase during multiple myeloma evolution and predict treatment resistance

    Get PDF
    Abstract Tumor recognition by T cells is essential for antitumor immunity. A comprehensive characterization of T cell diversity may be key to understanding the success of immunomodulatory drugs and failure of PD-1 blockade in tumors such as multiple myeloma (MM). Here, we use single-cell RNA and T cell receptor sequencing to characterize bone marrow T cells from healthy adults (n = 4) and patients with precursor (n = 8) and full-blown MM (n = 10). Large T cell clones from patients with MM expressed multiple immune checkpoints, suggesting a potentially dysfunctional phenotype. Dual targeting of PD-1 + LAG3 or PD-1 + TIGIT partially restored their function in mice with MM. We identify phenotypic hallmarks of large intratumoral T cell clones, and demonstrate that the CD27− and CD27+ T cell ratio, measured by flow cytometry, may serve as a surrogate of clonal T cell expansions and an independent prognostic factor in 543 patients with MM treated with lenalidomide-based treatment combinations

    Clinical phenotypes and outcomes in children with multisystem inflammatory syndrome across SARS-CoV-2 variant eras: a multinational study from the 4CE consortiumResearch in context

    No full text
    Summary: Background: Multisystem inflammatory syndrome in children (MIS-C) is a severe complication of SARS-CoV-2 infection. It remains unclear how MIS-C phenotypes vary across SARS-CoV-2 variants. We aimed to investigate clinical characteristics and outcomes of MIS-C across SARS-CoV-2 eras. Methods: We performed a multicentre observational retrospective study including seven paediatric hospitals in four countries (France, Spain, U.K., and U.S.). All consecutive confirmed patients with MIS-C hospitalised between February 1st, 2020, and May 31st, 2022, were included. Electronic Health Records (EHR) data were used to calculate pooled risk differences (RD) and effect sizes (ES) at site level, using Alpha as reference. Meta-analysis was used to pool data across sites. Findings: Of 598 patients with MIS-C (61% male, 39% female; mean age 9.7 years [SD 4.5]), 383 (64%) were admitted in the Alpha era, 111 (19%) in the Delta era, and 104 (17%) in the Omicron era. Compared with patients admitted in the Alpha era, those admitted in the Delta era were younger (ES −1.18 years [95% CI −2.05, −0.32]), had fewer respiratory symptoms (RD −0.15 [95% CI −0.33, −0.04]), less frequent non-cardiogenic shock or systemic inflammatory response syndrome (SIRS) (RD −0.35 [95% CI −0.64, −0.07]), lower lymphocyte count (ES −0.16 × 109/uL [95% CI −0.30, −0.01]), lower C-reactive protein (ES −28.5 mg/L [95% CI −46.3, −10.7]), and lower troponin (ES −0.14 ng/mL [95% CI −0.26, −0.03]). Patients admitted in the Omicron versus Alpha eras were younger (ES −1.6 years [95% CI −2.5, −0.8]), had less frequent SIRS (RD −0.18 [95% CI −0.30, −0.05]), lower lymphocyte count (ES −0.39 × 109/uL [95% CI −0.52, −0.25]), lower troponin (ES −0.16 ng/mL [95% CI −0.30, −0.01]) and less frequently received anticoagulation therapy (RD −0.19 [95% CI −0.37, −0.04]). Length of hospitalization was shorter in the Delta versus Alpha eras (−1.3 days [95% CI −2.3, −0.4]). Interpretation: Our study suggested that MIS-C clinical phenotypes varied across SARS-CoV-2 eras, with patients in Delta and Omicron eras being younger and less sick. EHR data can be effectively leveraged to identify rare complications of pandemic diseases and their variation over time. Funding: None

    Characterization of long COVID temporal sub-phenotypes by distributed representation learning from electronic health record data: a cohort studyResearch in Context

    No full text
    Summary: Background: Characterizing Post-Acute Sequelae of COVID (SARS-CoV-2 Infection), or PASC has been challenging due to the multitude of sub-phenotypes, temporal attributes, and definitions. Scalable characterization of PASC sub-phenotypes can enhance screening capacities, disease management, and treatment planning. Methods: We conducted a retrospective multi-centre observational cohort study, leveraging longitudinal electronic health record (EHR) data of 30,422 patients from three healthcare systems in the Consortium for the Clinical Characterization of COVID-19 by EHR (4CE). From the total cohort, we applied a deductive approach on 12,424 individuals with follow-up data and developed a distributed representation learning process for providing augmented definitions for PASC sub-phenotypes. Findings: Our framework characterized seven PASC sub-phenotypes. We estimated that on average 15.7% of the hospitalized COVID-19 patients were likely to suffer from at least one PASC symptom and almost 5.98%, on average, had multiple symptoms. Joint pain and dyspnea had the highest prevalence, with an average prevalence of 5.45% and 4.53%, respectively. Interpretation: We provided a scalable framework to every participating healthcare system for estimating PASC sub-phenotypes prevalence and temporal attributes, thus developing a unified model that characterizes augmented sub-phenotypes across the different systems. Funding: Authors are supported by National Institute of Allergy and Infectious Diseases, National Institute on Aging, National Center for Advancing Translational Sciences, National Medical Research Council, National Institute of Neurological Disorders and Stroke, European Union, National Institutes of Health, National Center for Advancing Translational Sciences
    corecore