9 research outputs found
Real-world effectiveness of caplacizumab vs the standard of care in immune thrombotic thrombocytopenic purpura
Immune thrombotic thrombocytopenic purpura (iTTP) is a thrombotic microangiopathy caused by anti-ADAMTS13 antibodies. Caplacizumab is approved for adults with an acute episode of iTTP in conjunction with plasma exchange (PEX) and immunosuppression. The objective of this study was to analyze and compare the safety and efficacy of caplacizumab vs the standard of care and assess the effect of the concomitant use of rituximab. A retrospective study from the Spanish TTP Registry of patients treated with caplacizumab vs those who did not receive it was conducted. A total of 155 patients with iTTP (77 caplacizumab, 78 no caplacizumab) were included. Patients initially treated with caplacizumab had fewer exacerbations (4.5% vs 20.5%; P <.05) and less refractoriness (4.5% vs 14.1%; P <.05) than those who were not treated. Time to clinical response was shorter when caplacizumab was used as initial treatment vs caplacizumab used after refractoriness or exacerbation. The multivariate analysis showed that its use in the first 3 days after PEX was associated with a lower number of PEX (odds ratio, 7.5; CI, 2.3-12.7; P <.05) and days of hospitalization (odds ratio, 11.2; CI, 5.6-16.9; P <.001) compared with standard therapy. There was no difference in time to clinical remission in patients treated with caplacizumab compared with the use of rituximab. No severe adverse event was described in the caplacizumab group. In summary, caplacizumab reduced exacerbations and refractoriness compared with standard of care regimens. When administered within the first 3 days after PEX, it also provided a faster clinical response, reducing hospitalization time and the need for PEX
Real-world effectiveness of caplacizumab vs the standard of care in immune thrombotic thrombocytopenic purpura
Immune thrombotic thrombocytopenic purpura (iTTP) is a thrombotic microangiopathy caused by anti-ADAMTS13 antibodies. Caplacizumab is approved for adults with an acute episode of iTTP in conjunction with plasma exchange (PEX) and immunosuppression. The objective of this study was to analyze and compare the safety and efficacy of caplacizumab vs the standard of care and assess the effect of the concomitant use of rituximab. A retrospective study from the Spanish TTP Registry of patients treated with caplacizumab vs those who did not receive it was conducted. A total of 155 patients with iTTP (77 caplacizumab, 78 no caplacizumab) were included. Patients initially treated with caplacizumab had fewer exacerbations (4.5% vs 20.5%; P < .05) and less refractoriness (4.5% vs 14.1%; P < .05) than those who were not treated. Time to clinical response was shorter when caplacizumab was used as initial treatment vs caplacizumab used after refractoriness or exacerbation. The multivariate analysis showed that its use in the first 3 days after PEX was associated with a lower number of PEX (odds ratio, 7.5; CI, 2.3-12.7; P < .05) and days of hospitalization (odds ratio, 11.2; CI, 5.6-16.9; P < .001) compared with standard therapy. There was no difference in time to clinical remission in patients treated with caplacizumab compared with the use of rituximab. No severe adverse event was described in the caplacizumab group. In summary, caplacizumab reduced exacerbations and refractoriness compared with standard of care regimens. When administered within the first 3 days after PEX, it also provided a faster clinical response, reducing hospitalization time and the need for PEX
A Molecular Dynamic Model of Tryptophan Overproduction in Escherichia coli
Several deterministic models simulate the main molecular biology interactions among the numerous mechanisms controlling the dynamics of the tryptophan operon in native strains. However, no models exist to investigate bacterial tryptophan production from a biotechnological point of view. Here, we modified tryptophan models for native production to propose a biotechnological working model that incorporates the activity of tryptophan secretion systems and genetic modifications made in two reported E. coli strains. The resultant deterministic model could emulate the production of tryptophan in the same order of magnitude as those quantified experimentally by the genetically engineered E. coli strains GPT1001 and GPT1002 in shake flasks. We hope this work may contribute to the rational development of biological models that define and include the main parameters and molecular components for designing and engineering efficient biotechnological chassis to produce valuable chemicals
Protein phosphorylation regulates in vitro spinach chloroplast petD mRNA 3'-untranslated region stability, processing, and degradation
RNA-binding proteins (RNPs) participate in diverse processes of mRNA metabolism, and phosphorylation changes their binding properties. In spinach chloroplasts, 24RNP and 28RNP are associated with polynucleotide posphorylase forming a complex on charge of pre-mRNA 3'-end maturation. Here, we tested the hypothesis that the phosphorylation status of 24RNP and 28RNP, present in a spinach chloroplast mRNA 3'-UTR processing extract (CPE), controls the transition between petD precursor stabilization, 3'-UTR processing, and RNA degradation in vitro. The CPE processed or stabilized petD precursor depending on the ATP concentration present in an in vitro 3'-UTR processing (IVP) assay. These effects were also observed when ATP was pre-incubated and removed before the IVP assay. Moreover, a dephosphorylated (DP)-CPE degraded petD precursor and recovered 3'-UTR processing or stabilization activities in an ATP concentration dependent manner. To determine the role 24/28RNP plays in regulating these processes a 24/28RNP-depleted (Δ24/28)CPE was generated. The Δ24/28CPE degraded the petD precursor, but when it was reconstituted with recombinant non-phosphorylated (NP)-24RNP or NP-28RNP, the precursor was stabilized, whereas when Δ24/28CPE was reconstituted with phosphorylated (P)-24RNP or P-28RNP, it recovered 3'-UTR processing, indicating that 24RNP or 28RNP is needed to stabilize the precursor, have a redundant role, and their phosphorylation status regulates the transition between precursor stabilization and 3'-UTR processing. A DP-Δ24/28CPE reconstituted or not with NP-24/28RNP degraded petD precursor. Pre-incubation of DP-Δ24/28CPE with NP-24/28RNP plus 0.03 mM ATP recovered 3'-UTR processing activity, and its reconstitution with P-24/28RNP stabilized the precursor. However, pre-incubation of DP-Δ24/28CPE with 0.03 mM ATP, and further reconstitution with NP-24/28RNP or P-24/28RNP produced precursor stability instead of RNA degradation, and RNA processing instead of precursor stability, respectively. Moreover, in vitro phosphorylation of CPE showed that 24RNP, 28RNP, and other proteins may be phosphorylated. Altogether, these results reveal that phosphorylation of 24RNP, 28RNP, and other unidentified CPE proteins mediates the in vitro interplay between petD precursor stability, 3'-UTR processing, and degradation, and support the idea that protein phosphorylation plays an important role in regulating mRNA metabolism in chloroplast
Proteomic analysis of Escherichia coli detergent-resistant membranes (DRM).
Membrane microdomains or lipid rafts compartmentalize cellular processes by laterally organizing membrane components. Such sub-membrane structures were mainly described in eukaryotic cells, but, recently, also in bacteria. Here, the protein content of lipid rafts in Escherichia coli was explored by mass spectrometry analyses of Detergent Resistant Membranes (DRM). We report that at least three of the four E. coli flotillin homologous proteins were found to reside in DRM, along with 77 more proteins. Moreover, the proteomic data were validated by subcellular localization, using immunoblot assays and fluorescence microscopy of selected proteins. Our results confirm the existence of lipid raft-like microdomains in the inner membrane of E. coli and represent the first comprehensive profiling of proteins in these bacterial membrane platforms
Physical properties of Hi'iaka from stellar occultation data
Two very bright stellar occultations by Hi'iaka, the largest satellite of the dwarf planet Haumea, were predicted to take place during in April 2021. Since the uncertainty on Hi'iaka's shadow path was large due to uncertainty on Hi'iaka's position with respect to Haumea, we performed an observational campaign using medium-sized telescopes to obtain high accuracy astrometric data of Hi'iaka's orbit around Haumea. The astrometric data allowed us to successfully observe the first stellar occultation on April 6[SUP]th[/SUP], with final path crossing North Africa. We only obtained one positive chord in this event from the TRAPPIST-North telescope at Oukaïmeden Observatory (Morocco), but thanks to this detection, we were able to obtain a more accurate path for the second event on April 16[SUP]th[/SUP]. The second shadow path was predicted to cross the continental US from East to West. We carried out a huge observational campaign involving more than 50 professional and amateur observatories across the US and southern Canada. The final path of this second stellar occultation moved slightly to the North of the predicted path and, as a result, we were able to obtain 5 positive chords and negative chords only from the south of the shadow. We also collected photometric data in order to obtain Hi'iaka's rotational light-curve and calculate its three-dimensional shape. The rotational light-curve was obtained by observing the unresolved system of Haumea-Hi'iaka and removing Haumea's rotational light-curve from the data. Using Hi'iaka's rotational light-curve we obtained the rotational phase at which each stellar occultation took place, which allowed us to obtain a three-dimensional model of the satellite. Preliminary results from the stellar occultation show that Hi'iaka, with a triaxial shape as suggested in previous publications, is larger than what has been thought before and with a similar albedo to that of Haumea. In this talk we will present our analysis and preliminary results of some of Hi'iaka's physical properties