11 research outputs found

    Visual and passive acoustic observations of blue whale trios from two distinct populations

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schall, E., Di Iorio, L., Berchok, C., Filun, D., Bedrinana-Romano, L., Buchan, S. J., Van Opzeeland, I., Sears, R., & Hucke-Gaete, R. Visual and passive acoustic observations of blue whale trios from two distinct populations. Marine Mammal Science, (2019): 1-10, doi:10.1111/mms.12643.Blue whale populations from both hemispheres are thought to undertake annual migrations between high latitude feeding grounds and low latitude breeding grounds (Mackintosh, 1966). For individuals of some populations these predetermined movements to and from wintering areas where calving occurs have been confirmed through photo‐identification, satellite‐tracking, and passive acoustic monitoring (Burtenshaw et al., 2004; Mate, Lagerquist, & Calambokidis, 1999; Sears & Perrin, 2002; Stafford, Nieukirk, & Fox, 1999a). However, for many blue whale populations no clear migratory behavior has been reported and locations of respective breeding grounds remain unclear (e.g., Hucke‐Gaete, Osman, Moreno, Findlay, & Ljungblad, 2004; Samaran et al., 2013; Stafford, Chapp, Bohnenstiel, & Tolstoy, 2011; Thomisch et al., 2016). On feeding grounds in the Gulf of St. Lawrence and along the coast of California, blue whales have been observed to form female–male pairs during summer, which can remain stable up to over several weeks, with the number of pairs increasing towards the end of summer (Sears & Perrin, 2002; Calambokidis, unpublished data;1 RS, unpublished data). These pairs are sometimes joined by a second male, forming a blue whale trio, which often is observed to engage in surface active behaviors lasting several minutes (Sears & Perrin, 2002; RS, unpublished data). The formation of blue whale trios is probably related to reproductive competition between male escorts and female choice (RS, unpublished data). Blue whale males produce population‐specific songs likely functioning as reproductive advertisement (Edds‐Walton, 1997; Oleson et al. 2007a; Stafford, Fox, & Clark, 1998). Several studies have reported song year‐round in low‐, mid‐, and high‐latitude waters, frequently with high song production rates during summer on the feeding grounds (e.g., Barlow et al., 2018; Buchan, Stafford, & Hucke‐Gaete, 2015; Samaran, Adam, & Guinett, 2010; Ć irović et al., 2004; Stafford, Nieukirk, & Fox, 1999b; Thomisch et al., 2016). Therefore, breeding activities in blue whales may be more opportunistic, i.e., not restricted to the breeding season or to a specific habitat.ES thanks Prof. Dr. Per J. PalsbĂžll for the supervision of the initial Master research project, the Marco Polo fund, and the University Groningen for covering travel expenses. We thank the Melimoyu Ecosystem Research Institute, SNP Patagonia Sur, and the company Teledyne Reson for partially funding the acoustic data collection in southern Chile. RHG is thankful to WWF‐Germany/Chile for partially funding fieldwork through grants to Centro Ballena Azul. CLB thanks the team of the Mingan Island Cetacean Study for their logistical support of boats and lodging, access to the North Atlantic blue whale database, and field assistance; Yvon BĂ©langer for opening his home to her and RS's field crews; for financial support from the National Science Foundation (Graduate Fellowship), National Defense Industrial Association, American Museum of Natural History (Lerner Gray Fund for Marine Research Grant), Penn State Applied Research Laboratory, and private donors Jeff and Lynn Kraus; and graduate advisors at Penn State University David L. Bradley, Thomas B. Gabrielson, and Diana McCammon. LDI thanks the CroisiĂšres du Grand HĂ©ron and Center MĂ©riscope for allowing and supporting fieldwork, the Animal Behavior Department of the University of Zurich (Switzerland), the Bioacoustics Research Program at Cornell University (USA) and Prof. M. Manser and C. W. Clark for supervising LDI's Ph.D. The work was supported by grants to LDI for her PhD from the Forschungskommission der UniversitĂ€t ZĂŒrich, ZĂŒricher Tierschutz, Basler Stiftung fĂŒr Biologische Forschung, SCNAT, Zangger‐Weber‐Stiftung, SSVA. SJB thanks the Center for Oceanographic Research COPAS Sur‐Austral, CONICYT PIA PFB31, the Office of Naval Research Global (awards N62909‐16‐2214 and N00014‐17‐2606), and a grant to the Centro de Estudios Avanzados en Zonas Áridas from Programa Regional CONICYT R16A10003 for support during manuscript writing. We would like to thank the field crews (F. Viddi, J. Ruiz, A. Carpentier, M. Lessard, A. Liebschner, C. Ramp, S. Angel, K. Aucrenaz, T. Doniol‐Valcroze, J. LeBreus, B. Kot, and J. Puschock) for their immense commitment to blue whale research

    Most eastern boundary upwelling regions represent thermal refugia in the age of climate change

    Get PDF
    Eastern Boundary Upwelling Systems (EBUS) are regions where wind-driven coastal upwelling brings deep cold, nutrient-rich water to the surface and may be characterized by a coastal ‘footprint’ of sea surface temperature (SST) cooler than their surroundings. Previous studies have shown that EBUS coastal temperatures are responding differently to global ocean warming, warming slowly or not at all. However, the spatial dynamics of coastal upwelling footprints have yet to be investigated. In this paper, we use 20 years of high-resolution SST data derived from satellites (MUR SST) to test the null hypothesis that the extent of coastal upwelling footprints have remained stable over the period 2002–2022, consistent with the idea that these regions are thermal refugia. We investigate linear trends at different time scales, finding that the Humboldt and Iberian/Canary EBUS show no contraction of this footprint on annual or seasonal scales. The Benguela EBUS shows no change in its central and poleward subregions, but it exhibits contraction of the footprint in the equatorward subregion in the austral winter and spring. The California EBUS behaves differently: on the annual scale only the equatorward subregion shows contraction of the SST footprint, while on the seasonal scale, the entire EBUS show contraction during the fall or summer/fall. Summarizing the last two decades, most coastal habitats of EBUS (>80% of the areas tested) are remaining cool and may be acting as regional refugia from global warming, but this is true for some regions only during certain seasons. However, the declines in areal extent of upwelling in subregions of the California and Benguela EBUS indicate potential consequences for marine life and may help to explain changes in abundance, productivity, and redistributions of populations in these regions

    From Chilean Patagonia to Galapagos, Ecuador: novel insights on blue whale migratory pathways along the Eastern South Pacific

    No full text
    Background The most traditional scheme for migration among baleen whales comprises yearly migrations between productive waters at high latitude summer feeding grounds and warmer waters at lower latitudes where whales calve and mate, but rarely feed. Evidence indicates, however, that large departures from this scheme exist among populations and individuals. Furthermore, for some populations there is virtually no information on migratory pathways and destinations. Such is the case of Chilean blue whales throughout the Eastern South Pacific; hence, the goal of this study was to assess its migratory behavior. Methods Dedicated marine surveys and satellite tagging efforts were undertaken during the austral summer and early autumn on blue whale feeding grounds off Chilean Northern Patagonia (CNP) during 2013, 2015 and 2016. Positional data derived from satellite tags regarding movement patterns and behavior were analyzed using Bayesian switching first-difference correlated random walk models. Results We instrumented 10 CNP blue whales with satellite transmitters and documented individual variation in departure time, northbound migratory routes and potential wintering grounds. The onset of migration occurred from mid/late austral autumn to well into the austral winter. Blue whales moved in various directions, but ultimately converged toward a general NW movement direction along a wide corridor exceeding 2,000 km. Area-Restricted Search behavior was exhibited within fjords and channels of CNP and also South of Galapagos Archipelago (GA) and northern Peru, but never during migration. Interestingly, dive profiles for one whale that reached GA showed a sharp and consistent increase in depth north of 5°S and extreme deep dives of up to 330 m. Discussion Information derived from satellite tagged blue whales in this study is the first of its kind off the Eastern Southern Pacific. Our results provide valuable information on their migratory timing, routes and behavior on their northbound migration, particularly regarding the varied migratory plasticity for this particular population. Our results also highlight the first record of two complete migratory paths between CNP and GA and strengthen the hypothesis that GA waters correspond to a potential wintering destination for CNP blue whales. We further hypothesize that this area might be selected because of its biological productivity, which could provide feeding opportunities during the breeding season. Our results suggest that special efforts should be put forward to identify blue whale critical areas and understand key behavioral aspects in order to provide the basis for their conservation on a regional context (i.e., reducing potential ship strike and promote Marine Protected Area (MPA) implementation in Chile, Ecuador and Peru). Indeed, we suggest joint blue whale conservation efforts at the regional level in order to identify and determine potential threats and impacts and, most importantly, implement prospective management actions

    Defining priority areas for blue whale conservation and investigating overlap with vessel traffic in Chilean Patagonia, using a fast-fitting movement model

    Get PDF
    Defining priority areas and risk evaluation is of utmost relevance for endangered species` conservation. For the blue whale (Balaenoptera musculus), we aim to assess environmental habitat selection drivers, priority areas for conservation and overlap with vessel traffic off northern Chilean Patagonia (NCP). For this, we implemented a single-step continuous-time correlated-random-walk model which accommodates observational error and movement parameters variation in relation to oceanographic variables. Spatially explicit predictions of whales’ behavioral responses were combined with density predictions from previous species distribution models (SDM) and vessel tracking data to estimate the relative probability of vessels encountering whales and identifying areas where interaction is likely to occur. These estimations were conducted independently for the aquaculture, transport, artisanal fishery, and industrial fishery fleets operating in NCP. Blue whale movement patterns strongly agreed with SDM results, reinforcing our knowledge regarding oceanographic habitat selection drivers. By combining movement and density modeling approaches we provide a stronger support for purported priority areas for blue whale conservation and how they overlap with the main vessel traffic corridor in the NCP. The aquaculture fleet was one order of magnitude larger than any other fleet, indicating it could play a decisive role in modulating potential negative vessel-whale interactions within NCP

    Data from: Blue whale population structure along the eastern South Pacific Ocean: evidence of more than one population

    No full text
    Blue whales (Balaenoptera musculus) were among the most intensively exploited species of whales in the world. As a consequence of this intense exploitation, blue whale sightings off the coast of Chile were uncommon by the end of the 20th century. In 2004, a feeding and nursing ground was reported in southern Chile (SCh). With the aim to investigate the genetic identity and relationship of these Chilean blue whales to those in other Southern Hemisphere areas, 60 biopsy samples were collected from blue whales in SCh between 2003 and 2009. These samples were genotyped at seven microsatellite loci and the mitochondrial control region was sequenced, allowing us to identify 52 individuals. To investigate the genetic identity of this suspected remnant population, we compared these 52 individuals to blue whales from Antarctica (ANT, n = 96), Northern Chile (NCh, n = 19) and the eastern tropical Pacific (ETP, n = 31). No significant differentiation in haplotype frequencies (mtDNA) or among genotypes (nDNA) was found between SCh, NCh and ETP, while significant differences were found between those three areas and Antarctica for both the mitochondrial and microsatellite analyses. Our results suggest at least two breeding population units or subspecies exist, which is also supported by other lines of evidence such as morphometrics and acoustics. The lack of differences detected between SCh/NCh/ETP areas supports the hypothesis that eastern South Pacific blue whales are using the ETP area as a possible breeding area. Considering the small population sizes previously reported for the SCh area, additional conservation measures and monitoring of this population should be developed and prioritized
    corecore