846 research outputs found

    Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures

    Full text link
    The free-carrier screening of macroscopic polarization fields in wurtzite GaN/InGaN quantum wells lasers is investigated via a self-consistent tight-binding approach. We show that the high carrier concentrations found experimentally in nitride laser structures effectively screen the built-in spontaneous and piezoelectric polarization fields, thus inducing a ``field-free'' band profile. Our results explain some heretofore puzzling experimental data on nitride lasers, such as the unusually high lasing excitation thresholds and emission blue-shifts for increasing excitation levels.Comment: RevTeX 4 pages, 4 figure

    Expression of citrulline and homocitrulline residues in the lungs of non-smokers and smokers : implications for autoimmunity in rheumatoid arthritis

    Get PDF
    Introduction: Smoking is a well-established risk factor for rheumatoid arthritis (RA), and it has been proposed that smoking-induced citrullination renders autoantigens immunogenic. To investigate this mechanism, we examined human lung tissue from 40 subjects with defined smoking status, with or without chronic obstructive pulmonary disease (COPD), and control tissues from other organs for citrullinated proteins and the deiminating enzymes peptidylarginine deiminase type-2 (PAD2) and -4 (PAD4). Methods: Lung tissue samples, dissected from lobectomy specimens from 10 never smokers, 10 smokers without airflow limitation, 13 COPD smokers and eight COPD ex-smokers, and control tissue samples (spleen, skeletal muscle, liver, ovary, lymph node, kidney and heart), were analysed for citrullinated proteins, PAD2 and PAD4 by immunoblotting. Citrulline and homocitrulline residues in enolase and vimentin were analysed by partial purification by gel electrophoresis followed by mass spectrometry in 12 of the lung samples and one from each control tissues. Band intensities were scored semi-quantitatively and analysed by two-tailed Mann-Whitney T-test. Results: Within the lung tissue samples, citrullinated proteins, PAD2 and PAD4 were found in all samples, with an increase in citrullination in COPD (P = 0.039), but minimal difference between smokers and non-smokers (P = 0.77). Citrullination was also detected at lower levels in the tissues from other organs, principally in lymph node, kidney and skeletal muscle. Mass spectrometry of the lung samples showed that vimentin was citrullinated at positions 71, 304, 346, 410 and 450 in non-smokers and smokers both with and without COPD. A homocitrulline at position 104 was found in four out of six COPD samples and one out of six non-COPD. Citrulline-450 was also found in three of the control tissues. There were no citrulline or homocitrulline residues demonstrated in a-enolase. Conclusions: We have shown evidence of citrullination of vimentin, a major autoantigen in RA, in both non-smokers and smokers. The increase in citrullinated proteins in COPD suggests that citrullination in the lungs of smokers is mainly due to inflammation. The ubiquity of citrullination of vimentin in the lungs and other tissues suggests that the relationship between smoking and autoimmunity in RA may be more complex than previously thought

    Glycaemic control in the perioperative period

    Get PDF
    The prevalence of type 2 diabetes mellitus and the potential for perioperative dysglycaemia (hyperglycaemia, hypoglycaemia, stress-induced hyperglycaemia, or glucose variability) continue to increase dramatically. The majority of investigations on perioperative glycaemic control focused on critically ill patients and concentrated on goals of therapy, level of intensity of insulin infusion, feeding regimes, concerns over hypoglycaemia, and promulgation of recent guidelines calling for less strict glucose control. Areas of perioperative glycaemic control that deserve further investigation include preoperative identification of patients with undiagnosed type 2 diabetes and other forms of dysglycaemia, determination of appropriate intraoperative glucose goals, and establishment of the impact and natural history of perioperative abnormalities in glucose homeostasis. In the heterogeneous adult perioperative population, it is unlikely that one standard of perioperative glycaemic control is appropriate for all patients. This review presents recent evidence and expert guidance to aid preoperative assessment, intraoperative management, and postoperative care of the dysglycaemic adult patien

    New insights into the genesis of the Miocene collapse structures of the island of Gozo (Malta, central Mediterranean Sea)

    Get PDF
    The large palaeosinkholes located in the NW of Gozo (central Mediterranean Sea, Malta) offer excellent exposures that provide information on the geometry and kinematics of large karst-related collapse structures. Detailed geological analysis of these peculiar palaeosinkholes indicates that deep-seated evaporite dissolution is the most feasible hypothesis to explain their formation, according to the following evidence. (1) Several structures have been formed by progressive foundering of cylindrical blocks with limited internal deformation as revealed by the synsedimentary subsidence recorded by their Miocene sedimentary fill. This subsidence mechanism is more compatible with interstratal dissolution of evaporites than karstification and cave development in limestone formations. (2) The dimensions and deformation style of the palaeosinkholes are similar to those of other collapse structures related to deep-seated dissolution of salt-bearing evaporites. (3) The arcuate monocline associated with some of these collapse structures is also a characteristic feature of subsidence related to dissolution of evaporites. However, no major evaporite formations have been documented so far in the subsurface of the Malta Platform

    Identification, isolation and in vitro expansion of human and nonhuman primate T stem cell memory cell

    Get PDF
    The T cell compartment is phenotypically and functionally heterogeneous; subsets of naive and memory cells have different functional properties, and also differ with respect to homeostatic potential and the ability to persist in vivo. Human stem cell memory T (TSCM) cells, which possess superior immune reconstitution and antitumor response capabilities, can be identified by polychromatic flow cytometry on the basis of the simultaneous expression of several naive markers together with the memory marker CD95. We describe here a protocol based on the minimum set of markers required for optimal identification of human and nonhuman primate (NHP) TSCM cells with commonly available flow cytometers. By using flow sorters, TSCM cells can thereby be isolated efficiently at high yield and purity. With the use of the 5.5-h isolation procedure, depending on the number of cells needed, the sorting procedure can last for 2-15 h. We also indicate multiple strategies for their efficient expansion in vitro at consistent numbers for functional characterization or adoptive transfer experiments

    In vitro and in vivo assessment of the potential of escherichia coli phages to treat infections and survive gastric conditions

    Get PDF
    Enterotoxigenic Escherichia coli (ETEC) and Shigella ssp. infections are associated with high rates of mortality, especially in infants in developing countries. Due to increasing levels of global antibiotic resistance exhibited by many pathogenic organisms, alternative strategies to combat such infections are urgently required. In this study, we evaluated the stability of five coliphages (four Myoviridae and one Siphoviridae phage) over a range of pH conditions and in simulated gastric conditions. The Myoviridae phages were stable across the range of pH 2 to 7, while the Siphoviridae phage, JK16, exhibited higher sensitivity to low pH. A composite mixture of these five phages was tested in vivo in a Galleria mellonella model. The obtained data clearly shows potential in treating E. coli infections prophylactically

    Brussowvirus SW13 Requires a Cell Surface-Associated Polysaccharide To Recognize Its Streptococcus thermophilus Host

    Get PDF
    Four bacteriophage-insensitive mutants (BIMs) of the dairy starter bacterium Streptococcus thermophilus UCCSt50 were isolated following challenge with Brussowvirus SW13. The BIMs displayed an altered sedimentation phenotype. Whole-genome sequencing and comparative genomic analysis of the BIMs uncovered mutations within a family 2 glycosyltransferase-encoding gene (orf06955(UCCSt50)) located within the variable region of the cell wall-associated rhamnose-glucose polymer (Rgp) biosynthesis locus (designated the rgp gene cluster here). Complementation of a representative BIM, S. thermophilus B1, with native orf06955(UCCSt50) restored phage sensitivity comparable to that of the parent strain. Detailed bioinformatic analysis of the gene product of orf06955(UCCSt50) identified it as a functional homolog of the Lactococcus lactis polysaccharide pellicle (PSP) initiator WpsA. Biochemical analysis of cell wall fractions of strains UCCSt50 and B1 determined that mutations within orf06955(UCCSt50) result in the loss of the side chain decoration from the Rgp backbone structure. Furthermore, it was demonstrated that the intact Rgp structure incorporating the side chain structure is essential for phage binding through fluorescence labeling studies. Overall, this study confirms that the rgp gene cluster of S. thermophilus encodes the biosynthetic machinery for a cell surface-associated polysaccharide that is essential for binding and subsequent infection by Brussowviruses, thus enhancing our understanding of S. thermophilus phage-host dynamics.IMPORTANCE Streptococcus thermophilus is an important starter culture bacterium in global dairy fermentation processes, where it is used for the production of various cheeses and yogurt. Bacteriophage predation of the species can result in substandard product quality and, in rare cases, complete fermentation collapse. To mitigate these risks, it is necessary to understand the phage-host interaction process, which commences with the recognition of, and adsorption to, specific host-encoded cell surface receptors by bacteriophage(s). As new groups of S. thermophilus phages are being discovered, the importance of underpinning the genomic elements that specify the surface receptor(s) is apparent. Our research identifies a single gene that is critical for the biosynthesis of a saccharidic moiety required for phage adsorption to its S. thermophilus host. The acquired knowledge provides novel insights into phage-host interactions for this economically important starter species

    Biomarker records and mineral compositions of the Messinian halite and K–Mg salts from Sicily

    Get PDF
    The evaporites of the Realmonte salt mine (Sicily, Italy) are important archives recording the most extreme conditions of the Messinian Salinity Crisis (MSC). However, geochemical approach on these evaporitic sequences is scarce and little is known on the response of the biological community to drastically elevating salinity. In the present work, we investigated the depositional environments and the biological community of the shale–anhydrite–halite triplets and the K–Mg salt layer deposited during the peak of the MSC. Both hopanes and steranes are detected in the shale–anhydrite–halite triplets, suggesting the presence of eukaryotes and bacteria throughout their deposition. The K–Mg salt layer is composed of primary halites, diagenetic leonite, and primary and/or secondary kainite, which are interpreted to have precipitated from density-stratified water column with the halite-precipitating brine at the surface and the brineprecipitating K–Mg salts at the bottom. The presence of hopanes and a trace amount of steranes implicates that eukaryotes and bacteria were able to survive in the surface halite-precipitating brine even during the most extreme condition of the MSC.This work was performed with the support of Japan Society for the Promotion of Science (JSPS) Research Fellowship (16 J07844) to YI and JAMSTEC President Fund to NO

    Lysogenization of a lactococcal host with three distinct temperate phages provides homologous and heterologous phage resistance

    Get PDF
    Lactococcus lactis is the most widely exploited microorganism in global dairy fermentations. Lactococcal strains are described as typically harboring a number of prophages in their chromosomes. The presence of such prophages may provide both advantages and disadvantages to the carrying host. Here, we describe the deliberate generation of three distinct lysogens of the model lactococcal strain 3107 and the impact of additional prophage carriage on phage-resistance and anti-microbial susceptibility. Lysogen-specific responses were observed, highlighting the unique relationship and impact of each lysogenic phage on its host. Both homologous and heterologous phage-resistance profiles were observed, highlighting the presence of possible prophage-encoded phage-resistance factors. Superinfection exclusion was among the most notable causes of heterologous phage-resistance profiles with resistance observed against members of the Skunavirus, P335, P087, and 949 lactococcal phage groups. Through these analyses, it is now possible to identify phages that may pursue similar DNA injection pathways. The generated lysogenic strains exhibited increased sensitivity to the antimicrobial compounds, nisin and lysozyme, relative to the parent strain, although it is noteworthy that the degree of sensitivity was specific to the individual (pro)phages. Overall, the findings highlight the unique impact of each prophage on a given strain and the requirement for strain-level analysis when considering the implications of lysogeny

    Bifidobacterium canis sp. Nov., a novel member of the bifidobacterium pseudolongum phylogenetic group isolated from faeces of a dog (canis lupus f. familiaris)

    Get PDF
    A fructose-6-phosphate phosphoketolase-positive strain (GSD1FST) was isolated from a faecal sample of a 3 weeks old German Shepherd dog. The closest related taxa to isolate GSD1FST based on results from the EZBioCloud database were Bifidobacte-rium animalis subsp. animalis ATCC 25527T, Bifidobacterium animalis subsp. lactis DSM 10140T and Bifidobacterium anseris LMG 30189T, belonging to the Bifidobacterium pseudolongum phylogenetic group. The resulting 16S rRNA gene identities (compared length of 1454 nucleotides) towards these taxa were 97.30, 97.23 and 97.09 %, respectively. The pairwise similarities of strain GSD1FST using argS, atpA, fusA, hsp60, pyrG, rpsC, thrS and xfp gene fragments to all valid representatives of the B. pseudo-longum phylogenetic group were in the concatenated range of 83.08–88.34 %. Phylogenomic analysis based on whole-genome methods such as average nucleotide identity revealed that bifidobacterial strain GSD1FST exhibits close phylogenetic relatedness (88.17 %) to Bifidobacetrium cuniculi LMG 10738T. Genotypic characteristics and phylogenetic analyses based on nine molecular markers, as well as genomic and comparative phenotypic analyses, clearly proved that the evaluated strain should be considered as representing a novel species within the B. pseudolongum phylogenetic group named as Bifidobacterium canis sp. nov. (GSD1FST=DSM 105923T=LMG 30345T=CCM 8806T)
    • …
    corecore