280 research outputs found
Complex magnetism of lanthanide intermetallics unravelled
We explain a profound complexity of magnetic interactions of some
technologically relevant gadolinium intermetallics using an ab-initio
electronic structure theory which includes disordered local moments and strong
-electron correlations. The theory correctly finds GdZn and GdCd to be
simple ferromagnets and predicts a remarkably large increase of Curie
temperature with pressure of +1.5 K kbar for GdCd confirmed by our
experimental measurements of +1.6 K kbar. Moreover we find the origin of
a ferromagnetic-antiferromagnetic competition in GdMg manifested by
non-collinear, canted magnetic order at low temperatures. Replacing 35\% of the
Mg atoms with Zn removes this transition in excellent agreement with
longstanding experimental data.Comment: 11 pages, 4 figure
Search for Doubly-Charged Higgs Boson Production at HERA
A search for the single production of doubly-charged Higgs bosons H^{\pm \pm}
in ep collisions is presented. The signal is searched for via the Higgs decays
into a high mass pair of same charge leptons, one of them being an electron.
The analysis uses up to 118 pb^{-1} of ep data collected by the H1 experiment
at HERA. No evidence for doubly-charged Higgs production is observed and mass
dependent upper limits are derived on the Yukawa couplings h_{el} of the Higgs
boson to an electron-lepton pair. Assuming that the doubly-charged Higgs only
decays into an electron and a muon via a coupling of electromagnetic strength
h_{e \mu} = \sqrt{4 \pi \alpha_{em}} = 0.3, a lower limit of 141 GeV on the
H^{\pm\pm} mass is obtained at the 95% confidence level. For a doubly-charged
Higgs decaying only into an electron and a tau and a coupling h_{e\tau} = 0.3,
masses below 112 GeV are ruled out.Comment: 15 pages, 3 figures, 1 tabl
Effects of GnRH vaccination in wild and captive African Elephant bulls (Loxodonta africana) on reproductive organs and semen quality
OBJECTIVES:
Although the African elephant (Loxodonta africana) is classified as endangered by the International
Union for Conservation of Nature (IUCN), in some isolated habitats in southern Africa,
contraception is of major interest due to local overpopulation. GnRH vaccination has been
promoted as a non-invasive contraceptive measure for population management of overabundant
wildlife. We tested the efficacy of this treatment for fertility control in elephant bulls.
METHODS:
In total, 17 male African elephants that were treated with a GnRH vaccine were examined in
two groups. In the prospective study group 1 (n = 11 bulls, ages: 8±36 years), semen quality,
the testes, seminal vesicles, ampullae and prostate, which were all measured by means of
transrectal ultrasound, and faecal androgen metabolite concentrations were monitored over
a three-year period. Each bull in the prospective study received 5 ml of Improvac® (1000 μg
GnRH conjugate) intramuscularly after the first examination, followed by a booster six
weeks later and thereafter every 5±7 months. In a retrospective study group (group 2, n = 6,
ages: 19±33 years), one examination was performed on bulls which had been treated with
GnRH vaccine for 5±11 years.
RESULTS:
In all bulls of group 1, testicular and accessory sex gland sizes decreased significantly after
the third vaccination. In six males examined prior to vaccination and again after more than
five vaccinations, the testis size was reduced by 57.5%. Mean testicular height and length
decreased from 13.3 ± 2.6 cm x 15.2 ± 2.8 cm at the beginning to 7.6 ± 2.1 cm x 10.2 ± 1.8
cm at the end of the study. Post pubertal bulls (>9 years, n = 6) examined prior to vaccination
produced ejaculates with viable spermatozoa (volume: 8±175 ml, sperm concentration:
410-4000x106/ml, total motility: 0±90%), while after 5±8 injections, only 50% of these bulls
produced ejaculates with a small number of immotile spermatozoa. The ejaculates of group
2 bulls (vaccinated >8 times) were devoid of spermatozoa. Faecal androgen metabolite concentrations
measured in captive males decreased significantly after the fourth vaccination.
None of the males entered musth during the treatment period.
CONCLUSIONS:
Our results showed a marked decrease in semen quality, testicle and secondary sex gland
sizes following repeated GnRH vaccinations. After 2±4 years of continuous treatment every
5±7 months, the effects were similar to surgical castration.ISIScopu
Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA
Deep-inelastic positron-proton interactions at low values of Bjorken-x down
to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons
are studied with the H1 experiment at HERA. The inclusive cross section for
pi^0 mesons produced at small angles with respect to the proton remnant (the
forward region) is presented as a function of the transverse momentum and
energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x.
Measurements are also presented of the transverse energy flow in events
containing a forward pi^0 meson. Hadronic final state calculations based on QCD
models implementing different parton evolution schemes are confronted with the
data.Comment: 27 pages, 8 figures and 3 table
Genome-Wide Assessments Reveal Extremely High Levels of Polymorphism of Two Active Families of Mouse Endogenous Retroviral Elements
Endogenous retroviral elements (ERVs) in mice are significant genomic mutagens, causing ∼10% of all reported spontaneous germ line mutations in laboratory strains. The majority of these mutations are due to insertions of two high copy ERV families, the IAP and ETn/MusD elements. This significant level of ongoing retrotranspositional activity suggests that inbred mice are highly variable in content of these two ERV groups. However, no comprehensive genome-wide studies have been performed to assess their level of polymorphism. Here we compared three test strains, for which sufficient genomic sequence is available, to each other and to the reference C57BL/6J genome and detected very high levels of insertional polymorphism for both ERV families, with an estimated false discovery rate of only 0.4%. Specifically, we found that at least 60% of IAP and 25% of ETn/MusD elements detected in any strain are absent in one or more of the other three strains. The polymorphic nature of a set of 40 ETn/MusD elements found within gene introns was confirmed using genomic PCR on DNA from a panel of mouse strains. For some cases, we detected gene-splicing abnormalities involving the ERV and obtained additional evidence for decreased gene expression in strains carrying the insertion. In total, we identified nearly 700 polymorphic IAP or ETn/MusD ERVs or solitary LTRs that reside in gene introns, providing potential candidates that may contribute to gene expression differences among strains. These extreme levels of polymorphism suggest that ERV insertions play a significant role in genetic drift of mouse lines
Genome-Wide Assessments Reveal Extremely High Levels of Polymorphism of Two Active Families of Mouse Endogenous Retroviral Elements
Endogenous retroviral elements (ERVs) in mice are significant genomic mutagens, causing ∼10% of all reported spontaneous germ line mutations in laboratory strains. The majority of these mutations are due to insertions of two high copy ERV families, the IAP and ETn/MusD elements. This significant level of ongoing retrotranspositional activity suggests that inbred mice are highly variable in content of these two ERV groups. However, no comprehensive genome-wide studies have been performed to assess their level of polymorphism. Here we compared three test strains, for which sufficient genomic sequence is available, to each other and to the reference C57BL/6J genome and detected very high levels of insertional polymorphism for both ERV families, with an estimated false discovery rate of only 0.4%. Specifically, we found that at least 60% of IAP and 25% of ETn/MusD elements detected in any strain are absent in one or more of the other three strains. The polymorphic nature of a set of 40 ETn/MusD elements found within gene introns was confirmed using genomic PCR on DNA from a panel of mouse strains. For some cases, we detected gene-splicing abnormalities involving the ERV and obtained additional evidence for decreased gene expression in strains carrying the insertion. In total, we identified nearly 700 polymorphic IAP or ETn/MusD ERVs or solitary LTRs that reside in gene introns, providing potential candidates that may contribute to gene expression differences among strains. These extreme levels of polymorphism suggest that ERV insertions play a significant role in genetic drift of mouse lines
The Precarity of Progress: Implications of a Shifting Gendered Division of Labor for Relationships and Well-Being as a Function of Country-Level Gender Equality
The onset of the COVID-19 pandemic saw a shift toward a more traditional division of labor–one where women took greater
responsibility for household tasks and childcare than men. We tested whether this regressive shift was more acutely perceived
and experienced by women in countries with greater gender equality. Cross-cultural longitudinal survey data for women and
men (N = 10,238) was collected weekly during the first few months of the pandemic. Multilevel modelling analyses, based
on seven waves of data collection, indicated that a regressive shift was broadly perceived but not uniformly felt. Women and
men alike perceived a shift toward a more traditional division of household labor during the first few weeks of the pandemic.
However, this perception only undermined women’s satisfaction with their personal relationships and subjective mental health
if they lived in countries with higher levels of economic gender equality. Among women in countries with lower levels of
economic gender equality, the perceived shift predicted higher relationship satisfaction and mental health. There were no
such effects among men. Taken together, our results suggest that subjective perceptions of disempowerment, and the gender
role norms that underpin them, should be considered when examining the gendered impact of global crisis
Activation of Methanogenesis in Arid Biological Soil Crusts Despite the Presence of Oxygen
Methanogenesis is traditionally thought to occur only in highly reduced, anoxic environments. Wetland and rice field soils are well known sources for atmospheric methane, while aerated soils are considered sinks. Although methanogens have been detected in low numbers in some aerated, and even in desert soils, it remains unclear whether they are active under natural oxic conditions, such as in biological soil crusts (BSCs) of arid regions. To answer this question we carried out a factorial experiment using microcosms under simulated natural conditions. The BSC on top of an arid soil was incubated under moist conditions in all possible combinations of flooding and drainage, light and dark, air and nitrogen headspace. In the light, oxygen was produced by photosynthesis. Methane production was detected in all microcosms, but rates were much lower when oxygen was present. In addition, the δ13C of the methane differed between the oxic/oxygenic and anoxic microcosms. While under anoxic conditions methane was mainly produced from acetate, it was almost entirely produced from H2/CO2 under oxic/oxygenic conditions. Only two genera of methanogens were identified in the BSC-Methanosarcina and Methanocella; their abundance and activity in transcribing the mcrA gene (coding for methyl-CoM reductase) was higher under anoxic than oxic/oxygenic conditions, respectively. Both methanogens also actively transcribed the oxygen detoxifying gene catalase. Since methanotrophs were not detectable in the BSC, all the methane produced was released into the atmosphere. Our findings point to a formerly unknown participation of desert soils in the global methane cycle
Preferential Localization of Human Origins of DNA Replication at the 5′-Ends of Expressed Genes and at Evolutionarily Conserved DNA Sequences
Replication of mammalian genomes requires the activation of thousands of
origins which are both spatially and temporally regulated by as yet unknown
mechanisms. At the most fundamental level, our knowledge about the
distribution pattern of origins in each of the chromosomes, among different
cell types, and whether the physiological state of the cells alters this
distribution is at present very limited.We have used standard λ-exonuclease resistant nascent DNA preparations in
the size range of 0.7–1.5 kb obtained from the breast cancer cell line
MCF–7 hybridized to a custom tiling array containing 50–60 nt
probes evenly distributed among genic and non-genic regions covering about
1% of the human genome. A similar DNA preparation was used for
high-throughput DNA sequencing. Array experiments were also performed with
DNA obtained from BT-474 and H520 cell lines. By determining the sites
showing nascent DNA enrichment, we have localized several thousand origins
of DNA replication. Our major findings are: (a) both array and DNA
sequencing assay methods produced essentially the same origin distribution
profile; (b) origin distribution is largely conserved (>70%) in
all cell lines tested; (c) origins are enriched at the 5′ends of
expressed genes and at evolutionarily conserved intergenic sequences; and
(d) ChIP on chip experiments in MCF-7 showed an enrichment of H3K4Me3 and
RNA Polymerase II chromatin binding sites at origins of DNA replication.Our results suggest that the program for origin activation is largely
conserved among different cell types. Also, our work supports recent studies
connecting transcription initiation with replication, and in addition
suggests that evolutionarily conserved intergenic sequences have the
potential to participate in origin selection. Overall, our observations
suggest that replication origin selection is a stochastic process
significantly dependent upon local accessibility to replication factors
Effect of Biocontrol Agent Pseudomonas fluorescens 2P24 on Soil Fungal Community in Cucumber Rhizosphere Using T-RFLP and DGGE
Fungi and fungal community play important roles in the soil ecosystem, and the diversity of fungal community could act as natural antagonists of various plant pathogens. Biological control is a promising method to protect plants as chemical pesticides may cause environment pollution. Pseudomonas fluorescens 2P24 had strong inhibitory on Rastonia solanacearum, Fusarium oxysporum and Rhizoctonia solani, etc., and was isolated from the wheat rhizosphere take-all decline soils in Shandong province, China. However, its potential effect on soil fungal community was still unknown. In this study, the gfp-labeled P. fluorescens 2P24 was inoculated into cucumber rhizosphere, and the survival of 2P24 was monitored weekly. The amount decreased from 108 to 105 CFU/g dry soils. The effect of 2P24 on soil fungal community in cucumber rhizosphere was investigated using T-RFLP and DGGE. In T-RFLP analysis, principle component analysis showed that the soil fungal community was greatly influenced at first, digested with restriction enzyme Hinf I and Taq I. However, there was little difference as digested by different enzymes. DGGE results demonstrated that the soil fungal community was greatly shocked at the beginning, but it recovered slowly with the decline of P. fluorescens 2P24. Four weeks later, there was little difference between the treatment and control. Generally speaking, the effect of P. fluorescens 2P24 on soil fungal community in cucumber rhizosphere was just transient
- …