140 research outputs found
Finite difference time domain modeling of steady state scattering from jet engines with moving turbine blades
The approach chosen to model steady state scattering from jet engines with moving turbine blades is based upon the Finite Difference Time Domain (FDTD) method. The FDTD method is a numerical electromagnetic program based upon the direct solution in the time domain of Maxwell's time dependent curl equations throughout a volume. One of the strengths of this method is the ability to model objects with complicated shape and/or material composition. General time domain functions may be used as source excitations. For example, a plane wave excitation may be specified as a pulse containing many frequencies and at any incidence angle to the scatterer. A best fit to the scatterer is accomplished using cubical cells in the standard cartesian implementation of the FDTD method. The material composition of the scatterer is determined by specifying its electrical properties at each cell on the scatterer. Thus, the FDTD method is a suitable choice for problems with complex geometries evaluated at multiple frequencies. It is assumed that the reader is familiar with the FDTD method
A two dimensional finite difference time domain analysis of the quiet zone fields of an anechoic chamber
Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable
Three-Dimensional FDTD Simulation of Biomaterial Exposure to Electromagnetic Nanopulses
Ultra-wideband (UWB) electromagnetic pulses of nanosecond duration, or
nanopulses, have been recently approved by the Federal Communications
Commission for a number of various applications. They are also being explored
for applications in biotechnology and medicine. The simulation of the
propagation of a nanopulse through biological matter, previously performed
using a two-dimensional finite difference-time domain method (FDTD), has been
extended here into a full three-dimensional computation. To account for the UWB
frequency range, a geometrical resolution of the exposed sample was ,
and the dielectric properties of biological matter were accurately described in
terms of the Debye model. The results obtained from three-dimensional
computation support the previously obtained results: the electromagnetic field
inside a biological tissue depends on the incident pulse rise time and width,
with increased importance of the rise time as the conductivity increases; no
thermal effects are possible for the low pulse repetition rates, supported by
recent experiments. New results show that the dielectric sample exposed to
nanopulses behaves as a dielectric resonator. For a sample in a cuvette, we
obtained the dominant resonant frequency and the -factor of the resonator.Comment: 15 pages, 8 figure
Order N photonic band structures for metals and other dispersive materials
We show, for the first time, how to calculate photonic band structures for
metals and other dispersive systems using an efficient Order N scheme. The
method is applied to two simple periodic metallic systems where it gives
results in close agreement with calculations made with other techniques.
Further, the approach demonstrates excellent numerical stablity within the
limits we give. Our new method opens the way for efficient calculations on
complex structures containing a whole new class of material.Comment: Four pages, plus seven postscript figures. Submitted to Physical
Review Letter
Evaluation of the pectoralis major flap for reconstructive head and neck surgery
PURPOSE: The pectoralis major myocutaneous flap (PMMF) is a commonly used flap in reconstructive head and neck surgery, but in literature, the flap is also associated with a high incidence of complications in addition to its large bulk. The purpose of the study is the evaluation of the reliability and indication of this flap in reconstructive head and neck surgery. PATIENTS AND METHODS: The records of all patients treated with a PMMF between 1998 and 2009 were systematically reviewed. Data of recipient localization, main indication, and postoperative complications were analyzed. RESULTS: The male to female ratio was 17:3, with a mean age of 60 years (45-85). Indications in 7 patients were recurrence of a squamous cell carcinoma, in one case an osteoradionecrosis and in 12 cases an untreated squamous cell carcinoma. In 6 male patients (30%), a complication appeared leading to another surgery. CONCLUSION: The PMMF is a flap for huge defects in head and neck reconstructive surgery, in particular when a bulky flap is needed in order to cover the carotid artery or reconstructive surgery, but the complication rate should not be underestimated in particular after radiotherapy
First radial velocity results from the MINiature Exoplanet Radial Velocity Array (MINERVA)
The MINiature Exoplanet Radial Velocity Array (MINERVA) is a dedicated
observatory of four 0.7m robotic telescopes fiber-fed to a KiwiSpec
spectrograph. The MINERVA mission is to discover super-Earths in the habitable
zones of nearby stars. This can be accomplished with MINERVA's unique
combination of high precision and high cadence over long time periods. In this
work, we detail changes to the MINERVA facility that have occurred since our
previous paper. We then describe MINERVA's robotic control software, the
process by which we perform 1D spectral extraction, and our forward modeling
Doppler pipeline. In the process of improving our forward modeling procedure,
we found that our spectrograph's intrinsic instrumental profile is stable for
at least nine months. Because of that, we characterized our instrumental
profile with a time-independent, cubic spline function based on the profile in
the cross dispersion direction, with which we achieved a radial velocity
precision similar to using a conventional "sum-of-Gaussians" instrumental
profile: 1.8 m s over 1.5 months on the RV standard star HD 122064.
Therefore, we conclude that the instrumental profile need not be perfectly
accurate as long as it is stable. In addition, we observed 51 Peg and our
results are consistent with the literature, confirming our spectrograph and
Doppler pipeline are producing accurate and precise radial velocities.Comment: 22 pages, 9 figures, submitted to PASP, Peer-Reviewed and Accepte
A novel broad specificity fucosidase capable of core alpha 1-6 fucose release from N-glycans labeled with urea-linked fluorescent dyes
Host-parasite interactio
Recommended from our members
Rigorous analysis of numerical methods: a comparative study
For any photonic device simulation, the accuracy of the numerical solution not only depends on the methods being used but also on the discretization parameters used in that numerical method. In this work, Finite Element Method and Finite Difference Time Domain Method based on Maxwell’s equations were used to simulate optical waveguides and directional couplers. As the solution accuracy may also depend on the index contrast used in such photonic devices, the characteristics of low-index contrast Germanium doped Silica and high-index contrast Silicon Nanowire Waveguides were analyzed, evaluated and benchmarked. Numerical results to benchmark Directional Couplers are also reported in this paper
Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers
Small molecule splicing modifiers have been previously described that target the general splicing machinery and thus have low specificity for individual genes. Several potent molecules correcting the splicing deficit of the SMN2 (survival of motor neuron 2) gene have been identified and these molecules are moving towards a potential therapy for spinal muscular atrophy (SMA). Here by using a combination of RNA splicing, transcription, and protein chemistry techniques, we show that these molecules directly bind to two distinct sites of the SMN2 pre-mRNA, thereby stabilizing a yet unidentified ribonucleoprotein (RNP) complex that is critical to the specificity of these small molecules for SMN2 over other genes. In addition to the therapeutic potential of these molecules for treatment of SMA, our work has wide-ranging implications in understanding how small molecules can interact with specific quaternary RNA structures
Correlation of cutaneous tension distribution and tissue oxygenation with acute external tissue expansion
Today, the biomechanical fundamentals of skin expansion are based on viscoelastic models of the skin. Although many studies have been conducted in vitro, analyses performed in vivo are rare. Here, we present in vivo measurements of the expansion at the skin surface as well as measurement of the corresponding intracutaneous oxygen partial pressure. In our study the average skin stretching was 24%, with a standard deviation of 11%, excluding age or gender dependency. The measurement of intracutaneous oxygen partial pressure produced strong inter-individual fluctuations, including initial values at the beginning of the measurement, as well as varying individual patient reactions to expansion of the skin. Taken together, we propose that even large defect wounds can be closed successfully using the mass displacement caused by expansion especially in areas where soft, voluminous tissue layers are present
- …