243 research outputs found

    The plasmamembrane calmodulin–dependent calcium pump: a major regulator of nitric oxide synthase I

    Get PDF
    The plasma membrane calcium/calmodulin-dependent calcium ATPase (PMCA) (Shull, G.E., and J. Greeb. 1988. J. Biol. Chem. 263:8646–8657; Verma, A.K., A.G. Filoteo, D.R. Stanford, E.D. Wieben, J.T. Penniston, E.E. Strehler, R. Fischer, R. Heim, G. Vogel, S. Mathews, et al. 1988. J. Biol. Chem. 263:14152–14159; Carafoli, E. 1997. Basic Res. Cardiol. 92:59–61) has been proposed to be a regulator of calcium homeostasis and signal transduction networks of the cell. However, little is known about its precise mechanisms of action. Knock-out of (mainly neuronal) isoform 2 of the enzyme resulted in hearing loss and balance deficits due to severe inner ear defects, affecting formation and maintenance of otoconia (Kozel, P.J., R.A. Friedman, L.C. Erway, E.N. Yamoah, L.H. Liu, T. Riddle, J.J. Duffy, T. Doetschman, M.L. Miller, E.L. Cardell, and G.E. Shull. 1998. J. Biol. Chem. 273:18693–18696). Here we demonstrate that PMCA 4b is a negative regulator of nitric oxide synthase I (NOS-I, nNOS) in HEK293 embryonic kidney and neuro-2a neuroblastoma cell models. Binding of PMCA 4b to NOS-I was mediated by interaction of the COOH-terminal amino acids of PMCA 4b and the PDZ domain of NOS-I (PDZ: PSD 95/Dlg/ZO-1 protein domain). Increasing expression of wild-type PMCA 4b (but not PMCA mutants unable to bind PDZ domains or devoid of Ca2+-transporting activity) dramatically downregulated NO synthesis from wild-type NOS-I. A NOS-I mutant lacking the PDZ domain was not regulated by PMCA, demonstrating the specific nature of the PMCA–NOS-I interaction. Elucidation of PMCA as an interaction partner and major regulator of NOS-I provides evidence for a new dimension of integration between calcium and NO signaling pathways

    What can we learn from patients with heart failure about exercise adherence? A systematic review of qualitative papers

    Get PDF
    SCT may be a useful framework for developing interventions to support patients with HF in undertaking and maintaining regular exercise patterns. Specific components of SCT that practitioners may wish to consider include self-efficacy and outcome expectancies. These were issues referred to in papers for the systematic review that appear to be particularly related to exercise adherence

    Outcomes in patients with acute and stable coronary syndromes: insights from the prospective NOBORI-2 study

    Get PDF
    BACKGROUND: Contemporary data remains limited regarding mortality and major adverse cardiac events (MACE) outcomes in patients undergoing PCI for different manifestations of coronary artery disease. OBJECTIVES: We evaluated mortality and MACE outcomes in patients treated with PCI for STEMI (ST-elevation myocardial infarction), NSTEMI (non ST-elevation myocardial infarction) and stable angina through analysis of data derived from the Nobori-2 study. METHODS: Clinical endpoints were cardiac mortality and MACE (a composite of cardiac death, myocardial infarction and target vessel revascularization). RESULTS: 1909 patients who underwent PCI were studied; 1332 with stable angina, 248 with STEMI and 329 with NSTEMI. Age-adjusted Charlson co-morbidity index was greatest in the NSTEMI cohort (3.78±1.91) and lowest in the stable angina cohort (3.00±1.69); P<0.0001. Following Cox multivariate analysis cardiac mortality was independently worse in the NSTEMI vs the stable angina cohort (HR 2.31 (1.10-4.87), p = 0.028) but not significantly different for STEMI vs stable angina cohort (HR 0.72 (0.16-3.19), p = 0.67). Similar observations were recorded for MACE (<180 days) (NSTEMI vs stable angina: HR 2.34 (1.21-4.55), p = 0.012; STEMI vs stable angina: HR 2.19 (0.97-4.98), p = 0.061. CONCLUSIONS: The longer-term Cardiac mortality and MACE were significantly worse for patients following PCI for NSTEMI even after adjustment of clinical demographics and Charlson co-morbidity index whilst the longer-term prognosis of patients following PCI STEMI was favorable, with similar outcomes as those patients with stable angina following PCI

    Selective inhibition of plasma membrane calcium ATPase 4 improves angiogenesis and vascular reperfusion

    Get PDF
    Aims Ischaemic cardiovascular disease is a major cause of morbidity and mortality worldwide. Despite promising results from pre-clinical animal models, VEGF-based strategies for therapeutic angiogenesis have yet to achieve successful reperfusion of ischaemic tissues in patients. Failure to restore efficient VEGF activity in the ischaemic organ remains a major problem in current pro-angiogenic therapeutic approaches. Plasma membrane calcium ATPase 4 (PMCA4) negatively regulates VEGF-activated angiogenesis via inhibition of the calcineurin/NFAT signalling pathway. PMCA4 activity is inhibited by the small molecule aurintricarboxylic acid (ATA). We hypothesize that inhibition of PMCA4 with ATA might enhance VEGF-induced angiogenesis. Methods and results We show that inhibition of PMCA4 with ATA in endothelial cells triggers a marked increase in VEGF-activated calcineurin/NFAT signalling that translates into a strong increase in endothelial cell motility and blood vessel formation. ATA enhances VEGF-induced calcineurin signalling by disrupting the interaction between PMCA4 and calcineurin at the endothelial-cell membrane. ATA concentrations at the nanomolar range, that efficiently inhibit PMCA4, had no deleterious effect on endothelial-cell viability or zebrafish embryonic development. However, high ATA concentrations at the micromolar level impaired endothelial cell viability and tubular morphogenesis, and were associated with toxicity in zebrafish embryos. In mice undergoing experimentally-induced hindlimb ischaemia, ATA treatment significantly increased the reperfusion of post-ischaemic limbs. Conclusions Our study provides evidence for the therapeutic potential of targeting PMCA4 to improve VEGF-based pro-angiogenic interventions. This goal will require the development of refined, highly selective versions of ATA, or the identification of novel PMCA4 inhibitors

    EuroPhenome: a repository for high-throughput mouse phenotyping data.

    Get PDF
    The broad aim of biomedical science in the postgenomic era is to link genomic and phenotype information to allow deeper understanding of the processes leading from genomic changes to altered phenotype and disease. The EuroPhenome project (http://www.EuroPhenome.org) is a comprehensive resource for raw and annotated high-throughput phenotyping data arising from projects such as EUMODIC. EUMODIC is gathering data from the EMPReSSslim pipeline (http://www.empress.har.mrc.ac.uk/) which is performed on inbred mouse strains and knock-out lines arising from the EUCOMM project. The EuroPhenome interface allows the user to access the data via the phenotype or genotype. It also allows the user to access the data in a variety of ways, including graphical display, statistical analysis and access to the raw data via web services. The raw phenotyping data captured in EuroPhenome is annotated by an annotation pipeline which automatically identifies statistically different mutants from the appropriate baseline and assigns ontology terms for that specific test. Mutant phenotypes can be quickly identified using two EuroPhenome tools: PhenoMap, a graphical representation of statistically relevant phenotypes, and mining for a mutant using ontology terms. To assist with data definition and cross-database comparisons, phenotype data is annotated using combinations of terms from biological ontologies

    The Plasma Membrane Calcium ATPases and Their Role as Major New Players in Human Disease.

    Get PDF
    The Ca2+ extrusion function of the four mammalian isoforms of the plasma membrane calcium ATPases (PMCAs) is well established. There is also ever-increasing detail known of their roles in global and local Ca2+ homeostasis and intracellular Ca2+ signaling in a wide variety of cell types and tissues. It is becoming clear that the spatiotemporal patterns of expression of the PMCAs and the fact that their abundances and relative expression levels vary from cell type to cell type both reflect and impact on their specific functions in these cells. Over recent years it has become increasingly apparent that these genes have potentially significant roles in human health and disease, with PMCAs1-4 being associated with cardiovascular diseases, deafness, autism, ataxia, adenoma, and malarial resistance. This review will bring together evidence of the variety of tissue-specific functions of PMCAs and will highlight the roles these genes play in regulating normal physiological functions and the considerable impact the genes have on human disease
    corecore