30 research outputs found

    Stimulating at the right time: phase-specific deep brain stimulation.

    Get PDF
    SEE MOLL AND ENGEL DOI101093/AWW308 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson's disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient's tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects

    A Randomized Trial Directly Comparing Ventral Capsule and Anteromedial Subthalamic Nucleus Stimulation in Obsessive-Compulsive Disorder: Clinical and Imaging Evidence for Dissociable Effects.

    Get PDF
    BACKGROUND: Deep brain stimulation (DBS) is an emerging treatment for severe obsessive-compulsive disorder (OCD). We compared the efficacy of ventral capsule/ventral striatal (VC/VS) and anteromedial subthalamic nucleus (amSTN) DBS in the same patients and tested for mechanistic differences on mood and cognitive flexibility and associated neural circuitry. The possible synergistic benefit of DBS at both sites and cognitive behavioral therapy was explored. METHODS: Six patients with treatment-refractory OCD (5 men; Yale-Brown Obsessive Compulsive Scale score >32) entered double-blind counterbalanced phases of 12-week amSTN or VC/VS DBS, followed by 12-week open phases when amSTN and VC/VS were stimulated together, in which optimal stimulation parameters were achieved and adjunctive inpatient cognitive behavioral therapy was delivered. OCD and mood were assessed with standardized scales and cognitive flexibility with the Cambridge Neuropsychological Test Automated Battery Intra-Extra Dimensional Set-Shift task. Diffusion-weighted and intraoperative magnetic resonance imaging scans were performed for tractography from optimally activated electrode contacts. RESULTS: DBS at each site significantly and equivalently reduced OCD symptoms with little additional gain following combined stimulation. amSTN but not VC/VS DBS significantly improved cognitive flexibility, whereas VC/VS DBS had a greater effect on mood. The VC/VS effective site was within the VC. VC DBS connected primarily to the medial orbitofrontal cortex, and amSTN DBS to the lateral orbitofrontal cortex, dorsal anterior cingulate cortex, and dorsolateral prefrontal cortex. No further improvement followed cognitive behavioral therapy, reflecting a floor effect of DBS on OCD. CONCLUSIONS: Both the VC/VS and amSTN are effective targets for severe treatment-refractory OCD. Differential improvements in mood and cognitive flexibility and their associated connectivity suggest that DBS at these sites modulates distinct brain networks

    Short and long term outcome of bilateral pallidal stimulation in chorea-acanthocytosis

    Get PDF
    BACKGROUND: Chorea-acanthocytosis (ChAc) is a neuroacanthocytosis syndrome presenting with severe movement disorders poorly responsive to drug therapy. Case reports suggest that bilateral deep brain stimulation (DBS) of the ventro-postero-lateral internal globus pallidus (GPi) may benefit these patients. To explore this issue, the present multicentre (n=12) retrospective study collected the short and long term outcome of 15 patients who underwent DBS. METHODS: Data were collected in a standardized way 2-6 months preoperatively, 1-5 months (early) and 6 months or more (late) after surgery at the last follow-up visit (mean follow-up: 29.5 months). RESULTS: Motor severity, assessed by the Unified Huntington's Disease Rating Scale-Motor Score, UHDRS-MS), was significantly reduced at both early and late post-surgery time points (mean improvement 54.3% and 44.1%, respectively). Functional capacity (UHDRS-Functional Capacity Score) was also significantly improved at both post-surgery time points (mean 75.5% and 73.3%, respectively), whereas incapacity (UHDRS-Independence Score) improvement reached significance at early post-surgery only (mean 37.3%). Long term significant improvement of motor symptom severity (≥ 20 % from baseline) was observed in 61.5 % of the patients. Chorea and dystonia improved, whereas effects on dysarthria and swallowing were variable. Parkinsonism did not improve. Linear regression analysis showed that preoperative motor severity predicted motor improvement at both post-surgery time points. The most serious adverse event was device infection and cerebral abscess, and one patient died suddenly of unclear cause, 4 years after surgery. CONCLUSION: This study shows that bilateral DBS of the GPi effectively reduces the severity of drug-resistant hyperkinetic movement disorders such as present in ChAc

    Avoiding the ventricle:a simple step to improve accuracy of anatomical targeting during deep brain stimulation

    No full text
    Object. The authors examined the accuracy of anatomical targeting during electrode implantation for deep brain stimulation in functional neurosurgical procedures. Special attention was focused on the impact that ventricular involvement of the electrode trajectory had on targeting accuracy. Methods. The targeting error during electrode placement was assessed in 162 electrodes implanted in 109 patients at 2 centers. The targeting error was calculated as the shortest distance from the intended stereotactic coordinates to the final electrode trajectory as defined on postoperative stereotactic imaging. The trajectory of these electrodes in relation to the lateral ventricles was also analyzed on postoperative images, Results. The trajectory of 68 electrodes involved the ventricle. The targeting error for all electrodes was calculated: the mean +/- SD and the 95% Cl of the mean was 1.5 +/- 1.0 and 0.1 nm, respectively. The same calculations for targeting error for electrode trajectories that did not involve the ventricle were 1.2 +/- 0.7 and 0.1 nm. A significantly larger targeting error was seen in trajectories that involved the ventricle (1.9 +/- 1.1 and 0.3 mm; p <0.001). Thirty electrodes (19%) required multiple passes before final electrode implantation on the basis of physiological and/or clinical observations. There was a significant association between in increased requirement for multiple brain passes and ventricular involvement in the trajectory (p <0.01). Conclusions. Planning an electrode trajectory that avoids the ventricles is a simple precaution that significantly improves the accuracy of anatomical targeting during electrode placement for deep brain stimulation. Avoidance of the ventricles appears to reduce the need for multiple passes through the brain to reach the desired target its defined by clinical and physiological observations. (DOI: 10.3171/2008.12.JNS08885

    Optimized beamforming for simultaneous MEG and intracranial local field potential recordings in deep brain stimulation patients

    Get PDF
    Insight into how brain structures interact is critical for understanding the principles of functional brain architectures and may lead to better diagnosis and therapy for neuropsychiatric disorders. We recorded, simultaneously, magnetoencephalographic (MEG) signals and subcortical local field potentials (LFP) in a Parkinson's disease (PD) patient with bilateral deep brain stimulation (DBS) electrodes in the subthalamic nucleus (STN). These recordings offer a unique opportunity to characterize interactions between the subcortical structures and the neocortex. However, high-amplitude artefacts appeared in the MEG. These artefacts originated from the percutaneous extension wire, rather than from the actual DBS electrode and were locked to the heart beat. In this work, we show that MEG beamforming is capable of suppressing these artefacts and quantify the optimal regularization required. We demonstrate how beamforming makes it possible to localize cortical regions whose activity is coherent with the STN-LFP, extract artefact-free virtual electrode time-series from regions of interest and localize cortical areas exhibiting specific task-related power changes. This furnishes results that are consistent with previously reported results using artefact-free MEG data. Our findings demonstrate that physiologically meaningful information can be extracted from heavily contaminated MEG signals and pave the way for further analysis of combined MEG-LFP recordings in DBS patients

    Balance between competing spectral states in subthalamic nucleus is linked to motor impairment in Parkinson's disease.

    No full text
    Exaggerated bursts of activity at frequencies in the low beta band are a well-established phenomenon in the subthalamic nucleus (STN) of patients with Parkinson's disease. However, such activity is only moderately correlated with motor impairment. Here we test the hypothesis that beta bursts are just one of several dynamic states in the STN local field potential (LFP) in Parkinson's disease, and that together these different states predict motor impairment with high fidelity. LFPs were recorded in 32 patients (64 hemispheres) undergoing deep brain stimulation surgery targeting the STN. Recordings were performed following overnight withdrawal of anti-parkinsonian medication, and after administration of levodopa. LFPs were analysed using Hidden Markov Modelling to identify transient spectral states with frequencies under 40 Hz. Findings in the low beta frequency band were similar to those previously reported; levodopa reduced occurrence rate and duration of low beta states, and the greater the reductions, the greater the improvement in motor impairment. However, additional LFP states were distinguished in the theta, alpha and high beta bands, and these behaved in an opposite manner. They were increased in occurrence rate and duration by levodopa, and the greater the increases, the greater the improvement in motor impairment. In addition, levodopa favoured the transition of low beta states to other spectral states. When all LFP states and corresponding features were considered in a multivariate model it was possible to predict 50% of the variance in patients' hemibody impairment OFF medication, and in the change in hemibody impairment following levodopa. This only improved slightly if signal amplitude or gamma band features were also included in the multivariate model. In addition, it compares with a prediction of only 16% of the variance when using beta bursts alone. We conclude that multiple spectral states in the STN LFP have a bearing on motor impairment, and that levodopa-induced shifts in the balance between these states can predict clinical change with high fidelity. This is important in suggesting that some states might be upregulated to improve parkinsonism and in suggesting how LFP feedback can be made more informative in closed-loop deep brain stimulation systems

    Balance between competing spectral states in Subthalamic nucleus is linked to motor impairment in Parkinson’s Disease

    Get PDF
    Exaggerated bursts of activity at frequencies in the low beta band are a well-established phenomenon in the subthalamic nucleus (STN) of patients with Parkinson’s disease. However, such activity is only moderately correlated with motor impairment. Here we test the hypothesis that beta bursts are just one of several dynamic states in the STN local field potential (LFP) in Parkinson’s disease, and that together these different states predict motor impairment with high fidelity. LFPs were recorded in 32 patients (64 hemispheres) undergoing deep brain stimulation surgery targeting the STN. Recordings were performed following overnight withdrawal of anti-parkinsonian medication, and after administration of levodopa. LFPs were analysed using Hidden Markov Modelling to identify transient spectral states with frequencies under 40Hz. Findings in the low beta frequency band were similar to those previously reported; levodopa reduced occurrence rate and duration of low beta states, and the greater the reductions, the greater the improvement in motor impairment. However, additional LFP states were distinguished in the theta, alpha and high beta bands, and these behaved in an opposite manner. They were increased in occurrence rate and duration by levodopa, and the greater the increases, the greater the improvement in motor impairment. In addition, levodopa favoured the transition of low beta states to other spectral states. When all LFP states and corresponding features were considered in a multivariate model it was possible to predict 50% of the variance in patients’ hemibody impairment OFF medication, and in the change in hemibody impairment following levodopa. This only improved slightly if signal amplitude or gamma band features were also included in the multivariate model. In addition, it compares with a prediction of only 16% of the variance when using beta bursts alone. We conclude that multiple spectral states in the STN LFP have a bearing on motor impairment, and that levodopa-induced shifts in the balance between these states can predict clinical change with high fidelity. This is important in suggesting that some states might be upregulated to improve parkinsonism and in suggesting how LFP feedback can be made more informative in closed-loop deep brain stimulation systems
    corecore