708 research outputs found

    A call for public archives for biological image data

    Get PDF
    Public data archives are the backbone of modern biological and biomedical research. While archives for biological molecules and structures are well-established, resources for imaging data do not yet cover the full range of spatial and temporal scales or application domains used by the scientific community. In the last few years, the technical barriers to building such resources have been solved and the first examples of scientific outputs from public image data resources, often through linkage to existing molecular resources, have been published. Using the successes of existing biomolecular resources as a guide, we present the rationale and principles for the construction of image data archives and databases that will be the foundation of the next revolution in biological and biomedical informatics and discovery.Comment: 13 pages, 1 figur

    3D Mapping of the SPRY2 Domain of Ryanodine Receptor 1 by Single-Particle Cryo-EM

    Get PDF
    The type 1 skeletal muscle ryanodine receptor (RyR1) is principally responsible for Ca2+ release from the sarcoplasmic reticulum and for the subsequent muscle contraction. The RyR1 contains three SPRY domains. SPRY domains are generally known to mediate protein-protein interactions, however the location of the three SPRY domains in the 3D structure of the RyR1 is not known. Combining immunolabeling and single-particle cryo-electron microscopy we have mapped the SPRY2 domain (S1085-V1208) in the 3D structure of RyR1 using three different antibodies against the SPRY2 domain. Two obstacles for the image processing procedure; limited amount of data and signal dilution introduced by the multiple orientations of the antibody bound in the tetrameric RyR1, were overcome by modifying the 3D reconstruction scheme. This approach enabled us to ascertain that the three antibodies bind to the same region, to obtain a 3D reconstruction of RyR1 with the antibody bound, and to map SPRY2 to the periphery of the cytoplasmic domain of RyR1. We report here the first 3D localization of a SPRY2 domain in any known RyR isoform

    Capturing a Flavivirus Pre-Fusion Intermediate

    Get PDF
    During cell entry of flaviviruses, low endosomal pH triggers the rearrangement of the viral surface glycoproteins to a fusion-active state that allows the release of the infectious RNA into the cytoplasm. In this work, West Nile virus was complexed with Fab fragments of the neutralizing mAb E16 and was subsequently exposed to low pH, trapping the virions in a pre-fusion intermediate state. The structure of the complex was studied by cryo-electron microscopy and provides the first structural glimpse of a flavivirus fusion intermediate near physiological conditions. A radial expansion of the outer protein layer of the virion was observed compared to the structure at pH 8. The resulting ∼60 Å-wide shell of low density between lipid bilayer and outer protein layer is likely traversed by the stem region of the E glycoprotein. By using antibody fragments, we have captured a structural intermediate of a virus that likely occurs during cell entry. The trapping of structural transition states by antibody fragments will be applicable for other processes in the flavivirus life cycle and delineating other cellular events that involve conformational rearrangements

    Impact of stream impurities on compressor power requirements for CO2 pipeline transportation

    Get PDF
    The economic viability of Carbon Capture and Sequestration (CCS) as a means of mitigating CO2 emissions is significantly dependent on the minimisation of costs associated with the compression and transportation of the captured CO2. This paper describes the development and application of a rigorous thermodynamic model to compute and compare power requirements for various multistage compression strategies for CO2 streams containing typical impurities originating from various capture technologies associated with industrial and power emission sectors. The compression options examined include conventional multistage integrally geared centrifugal compressors, supersonic shockwave compressors and multistage compression combined with subcritical liquefaction and pumping. The study shows that for all the compression options examined, the compression power reduces with the increase in the purity of the CO2 stream, while the inter-stage cooling duty is predicted to be significantly higher than the compression power demand. For CO2 streams carrying less than 5% impurities, multistage compression combined with liquefaction and subsequent pumping from ca 62 bar pressure can offer higher efficiency than conventional gas-phase compression. In the case of a raw/dehumidified oxy-fuel CO2 stream of ca 85% purity, subcritical liquefaction at 62 bar pressure is shown to increase the cooling duty by ca 50% as compared to pure CO2

    Unsatisfactory gene transfer into bone-resorbing osteoclasts with liposomal transfection systems

    Get PDF
    BACKGROUND: Bone-resorbing osteoclasts are multinucleated cells that are formed via fusion of their hematopoietic stem cells. Many of the details of osteoclast formation, activation and motility remain unsolved. Therefore, there is an interest among bone biologists to transfect the terminally differentiated osteoclasts and follow their responses to the transgenes in vitro. Severe difficulties in transfecting the large, adherent osteoclasts have been encountered, however, making the use of modern cell biology tools in osteoclast research challenging. Transfection of mature osteoclasts by non-viral gene transfer systems has not been reported. RESULTS: We have systematically screened the usefulness of several commercial DNA transfection systems in human osteoclasts and their mononuclear precursor cell cultures, and compared transfection efficacy to adenoviral DNA transfection. None of the liposome-based or endosome disruption-inducing systems could induce EGFP-actin expression in terminally differentiated osteoclasts. Instead, a massive cell death by apoptosis was found with all concentrations and liposome/DNA-ratios tested. Best transfection efficiencies were obtained by adenoviral gene delivery. Marginal DNA transfection was obtained by just adding the DNA to the cell culture medium. When bone marrow-derived CD34-positive precursor cells were transfected, some GFP-expression was found at the latest 24 h after transfection. Large numbers of apoptotic cells were found and those cells that remained alive, failed to form osteoclasts when cultured in the presence of RANKL and M-CSF, key regulators of osteoclast formation. In comparison, adenoviral gene delivery resulted in the transfection of CD34-positive cells that remained GFP-positive for up to 5 days and allowed osteoclast formation. CONCLUSION: Osteoclasts and their precursors are sensitive to liposomal transfection systems, which induce osteoclast apoptosis. Gene transfer to mononuclear osteoclast precursors or differentiated osteoclasts was not possible with any of the commercial transfection systems tested. Osteoclasts are non-dividing, adherent cells that are difficult to grow as confluent cultures, which may explain problems with transfection reagents. Large numbers of α(v)β(3 )integrin on the osteoclast surface allows adenovirus endocytosis and infection proceeds in dividing and non-dividing cells efficiently. Viral gene delivery is therefore currently the method of choice for osteoclast transfection

    In vitro assembly of Ebola virus nucleocapsid-like complex expressed in E. coli

    Get PDF
    Ebola virus (EBOV) harbors an RNA genome encapsidated by nucleoprotein (NP) along with other viral proteins to form a nucleocapsid complex. Previous Cryo-eletron tomography and biochemical studies have shown the helical structure of EBOV nucleocapsid at nanometer resolution and the first 450 amino-acid of NP (NPΔ451–739) alone is capable of forming a helical nucleocapsid-like complex (NLC). However, the structural basis for NP-NP interaction and the dynamic procedure of the nucleocapsid assembly is yet poorly understood. In this work, we, by using an E. coli expression system, captured a series of images of NPΔ451–739 conformers at different stages of NLC assembly by negative-stain electron microscopy, which allowed us to picture the dynamic procedure of EBOV nucleocapsid assembly. Along with further biochemical studies, we showed the assembly of NLC is salt-sensitive, and also established an indispensible role of RNA in this process. We propose the diverse modes of NLC elongation might be the key determinants shaping the plasticity of EBOV virions. Our findings provide a new model for characterizing the self-oligomerization of viral nucleoproteins and studying the dynamic assembly process of viral nucleocapsid in vitro

    Membrane Partitioning: “Classical” and “Nonclassical” Hydrophobic Effects

    Get PDF
    The free energy of transfer of nonpolar solutes from water to lipid bilayers is often dominated by a large negative enthalpy rather than the large positive entropy expected from the hydrophobic effect. This common observation has led to the idea that membrane partitioning is driven by the “nonclassical” hydrophobic effect. We examined this phenomenon by characterizing the partitioning of the well-studied peptide melittin using isothermal titration calorimetry (ITC) and circular dichroism (CD). We studied the temperature dependence of the entropic (−TΔS) and enthalpic (ΔH) components of free energy (ΔG) of partitioning of melittin into lipid membranes made of various mixtures of zwitterionic and anionic lipids. We found significant variations of the entropic and enthalpic components with temperature, lipid composition and vesicle size but only small changes in ΔG (entropy–enthalpy compensation). The heat capacity associated with partitioning had a large negative value of about −0.5 kcal mol−1 K−1. This hallmark of the hydrophobic effect was found to be independent of lipid composition. The measured heat capacity values were used to calculate the hydrophobic-effect free energy ΔGhΦ, which we found to dominate melittin partitioning regardless of lipid composition. In the case of anionic membranes, additional free energy comes from coulombic attraction, which is characterized by a small effective peptide charge due to the lack of additivity of hydrophobic and electrostatic interactions in membrane interfaces [Ladokhin and White J Mol Biol 309:543–552, 2001]. Our results suggest that there is no need for a special effect—the nonclassical hydrophobic effect—to describe partitioning into lipid bilayers

    Dimeric SecA Couples the Preprotein Translocation in an Asymmetric Manner

    Get PDF
    The Sec translocase mediates the post-translational translocation of a number of preproteins through the inner membrane in bacteria. In the initiatory translocation step, SecB targets the preprotein to the translocase by specific interaction with its receptor SecA. The latter is the ATPase of Sec translocase which mediates the post-translational translocation of preprotein through the protein-conducting channel SecYEG in the bacterial inner membrane. We examined the structures of Escherichia coli Sec intermediates in solution as visualized by negatively stained electron microscopy in order to probe the oligomeric states of SecA during this process. The symmetric interaction pattern between the SecA dimer and SecB becomes asymmetric in the presence of proOmpA, and one of the SecA protomers predominantly binds to SecB/proOmpA. Our results suggest that during preprotein translocation, the two SecA protomers are different in structure and may play different roles
    corecore