9 research outputs found

    Enhanced Maternal Origin of the 22q11.2 Deletion in Velocardiofacial and DiGeorge Syndromes

    Get PDF
    Velocardiofacial and DiGeorge syndromes, also known as 22q11.2 deletion syndrome (22q11DS), are congenital-anomaly disorders caused by a de novo hemizygous 22q11.2 deletion mediated by meiotic nonallelic homologous recombination events between low-copy repeats, also known as segmental duplications. Although previous studies exist, each was of small size, and it remains to be determined whether there are parent-of-origin biases for the de novo 22q11.2 deletion. To address this question, we genotyped a total of 389 DNA samples from 22q11DS-affected families. A total of 219 (56%) individuals with 22q11DS had maternal origin and 170 (44%) had paternal origin of the de novo deletion, which represents a statistically significant bias for maternal origin (p = 0.0151). Combined with many smaller, previous studies, 465 (57%) individuals had maternal origin and 345 (43%) had paternal origin, amounting to a ratio of 1.35 or a 35% increase in maternal compared to paternal origin (p = 0.000028). Among 1,892 probands with the de novo 22q11.2 deletion, the average maternal age at time of conception was 29.5, and this is similar to data for the general population in individual countries. Of interest, the female recombination rate in the 22q11.2 region was about 1.6–1.7 times greater than that for males, suggesting that for this region in the genome, enhanced meiotic recombination rates, as well as other as-of-yet undefined 22q11.2-specific features, could be responsible for the observed excess in maternal origin

    Enhanced Maternal Origin of the 22q11.2 Deletion in Velocardiofacial and DiGeorge Syndromes

    Get PDF
    Velocardiofacial and DiGeorge syndromes, also known as 22q11.2 deletion syndrome (22q11DS), are congenital-anomaly disorders caused by a de novo hemizygous 22q11.2 deletion mediated by meiotic nonallelic homologous recombination events between low-copy repeats, also known as segmental duplications. Although previous studies exist, each was of small size, and it remains to be determined whether there are parent-of-origin biases for the de novo 22q11.2 deletion. To address this question, we genotyped a total of 389 DNA samples from 22q11DS-affected families. A total of 219 (56%) individuals with 22q11DS had maternal origin and 170 (44%) had paternal origin of the de novo deletion, which represents a statistically significant bias for maternal origin (p = 0.0151). Combined with many smaller, previous studies, 465 (57%) individuals had maternal origin and 345 (43%) had paternal origin, amounting to a ratio of 1.35 or a 35% increase in maternal compared to paternal origin (p = 0.000028). Among 1,892 probands with the de novo 22q11.2 deletion, the average maternal age at time of conception was 29.5, and this is similar to data for the general population in individual countries. Of interest, the female recombination rate in the 22q11.2 region was about 1.6–1.7 times greater than that for males, suggesting that for this region in the genome, enhanced meiotic recombination rates, as well as other as-of-yet undefined 22q11.2-specific features, could be responsible for the observed excess in maternal origin

    Prenatal findings in cardio-facio-cutaneous syndrome

    No full text
    International audienceOur study was designed to analyze prenatal manifestations in patientsă affected with cardio-facio-cutaneous syndrome (CFCS), in order to defineă indications of DNA testing in utero. Prenatal features were extractedă from a national database and additional data were collected from 16ă families contacted through the French association of CFC-Costelloă syndrome. We collected results of ultrasound scan (USS) biometrics,ă presence of congenital birth defects, and polyhydramnios. From theă database, increased nuchal translucency was present in 13% ofă pregnancies, polyhydramnios in 52%, macrosomia and/or macrocephaly ină 16%. Of the 16 pregnancies, 81% were complicated by abnormal USSă findings. Polyhydramnios was reported in 67%. Head circumference,ă biparietal diameter, and abdominal circumference were above the 90thă centile in 72%, 83% and, 81% of fetuses, respectively. Contrastingă with macrosomia, femur length was below the 10th centile in 38%.ă Urinary tract abnormalities were found in 47% of fetuses. Most CFCSă fetuses showed a combination of macrocephaly, macrosomia, andă polyhydramnios, contrasting with relatively short femora. This growthă pattern is also seen in Costello syndrome. We suggest that screening foră CFCS and Costello gene mutations could be proposed in pregnanciesă showing this unusual pattern of growth parameters. (c) 2015 Wileyă Periodicals, Inc

    Enhanced Maternal Origin of the 22q11.2 Deletion in Velocardiofacial and DiGeorge Syndromes

    No full text
    Velocardiofacial and DiGeorge syndromes, also known as 22q11.2 deletion syndrome (22q11DS), are congenital-anomaly disorders caused by a de novo hemizygous 22q11.2 deletion mediated by meiotic nonallelic homologous recombination events between low-copy repeats, also known as segmental duplications. Although previous studies exist, each was of small size, and it remains to be determined whether there are parent-of-origin biases for the de novo 22q11.2 deletion. To address this question, we genotyped a total of 389 DNA samples from 22q11DS-affected families. A total of 219 (56%) individuals with 22q11DS had maternal origin and 170 (44%) had paternal origin of the de novo deletion, which represents a statistically significant bias for maternal origin (p = 0.0151). Combined with many smaller, previous studies, 465 (57%) individuals had maternal origin and 345 (43%) had paternal origin, amounting to a ratio of 1.35 or a 35% increase in maternal compared to paternal origin (p = 0.000028). Among 1,892 probands with the de novo 22q11.2 deletion, the average maternal age at time of conception was 29.5, and this is similar to data for the general population in individual countries. Of interest, the female recombination rate in the 22q11.2 region was about 1.6-1.7 times greater than that for males, suggesting that for this region in the genome, enhanced meiotic recombination rates, as well as other as-of-yet undefined 22q11.2-specific features, could be responsible for the observed excess in maternal origin.publisher: Elsevier articletitle: Enhanced Maternal Origin of the 22q11.2 Deletion in Velocardiofacial and DiGeorge Syndromes journaltitle: The American Journal of Human Genetics articlelink: http://dx.doi.org/10.1016/j.ajhg.2013.01.018 content_type: article copyright: Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.status: publishe

    Baraitser-Winter cerebrofrontofacial syndrome: Delineation of the spectrum in 42 cases

    No full text
    Baraitser-Winter, Fryns-Aftimos and cerebrofrontofacial syndrome types 1 and 3 have recently been associated with heterozygous gain-of-function mutations in one of the two ubiquitous cytoplasmic actin-encoding genes ACTB and ACTG1 that encode β- and γ-actins. We present detailed phenotypic descriptions and neuroimaging on 36 patients analyzed by our group and six cases from the literature with a molecularly proven actinopathy (9 ACTG1 and 33 ACTB). The major clinical anomalies are striking dysmorphic facial features with hypertelorism, broad nose with large tip and prominent root, congenital non-myopathic ptosis, ridged metopic suture and arched eyebrows. Iris or retinal coloboma is present in many cases, as is sensorineural deafness. Cleft lip and palate, hallux duplex, congenital heart defects and renal tract anomalies are seen in some cases. Microcephaly may develop with time. Nearly all patients with ACTG1 mutations, and around 60% of those with ACTB mutations have some degree of pachygyria with anteroposterior severity gradient, rarely lissencephaly or neuronal heterotopia. Reduction of shoulder girdle muscle bulk and progressive joint stiffness is common. Early muscular involvement, occasionally with congenital arthrogryposis, may be present. Progressive, severe dystonia was seen in one family. Intellectual disability and epilepsy are variable in severity and largely correlate with CNS anomalies. One patient developed acute lymphocytic leukemia, and another a cutaneous lymphoma, indicating that actinopathies may be cancer-predisposing disorders. Considering the multifaceted role of actins in cell physiology, we hypothesize that some clinical manifestations may be partially mutation specific. Baraitser-Winter cerebrofrontofacial syndrome is our suggested designation for this clinical entity

    Baraitser-Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases

    Get PDF
    Baraitser-Winter, Fryns-Aftimos and cerebrofrontofacial syndrome types 1 and 3 have recently been associated with heterozygous gain-of-function mutations in one of the two ubiquitous cytoplasmic actin-encoding genes ACTB and ACTG1 that encode β- and γ-actins. We present detailed phenotypic descriptions and neuroimaging on 36 patients analyzed by our group and six cases from the literature with a molecularly proven actinopathy (9 ACTG1 and 33 ACTB). The major clinical anomalies are striking dysmorphic facial features with hypertelorism, broad nose with large tip and prominent root, congenital non-myopathic ptosis, ridged metopic suture and arched eyebrows. Iris or retinal coloboma is present in many cases, as is sensorineural deafness. Cleft lip and palate, hallux duplex, congenital heart defects and renal tract anomalies are seen in some cases. Microcephaly may develop with time. Nearly all patients with ACTG1 mutations, and around 60% of those with ACTB mutations have some degree of pachygyria with anteroposterior severity gradient, rarely lissencephaly or neuronal heterotopia. Reduction of shoulder girdle muscle bulk and progressive joint stiffness is common. Early muscular involvement, occasionally with congenital arthrogryposis, may be present. Progressive, severe dystonia was seen in one family. Intellectual disability and epilepsy are variable in severity and largely correlate with CNS anomalies. One patient developed acute lymphocytic leukemia, and another a cutaneous lymphoma, indicating that actinopathies may be cancer-predisposing disorders. Considering the multifaceted role of actins in cell physiology, we hypothesize that some clinical manifestations may be partially mutation specific. Baraitser-Winter cerebrofrontofacial syndrome is our suggested designation for this clinical entity

    Baraitser–Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases

    No full text
    corecore