139 research outputs found

    Probing the future of correlative microscopy

    Get PDF

    Sustainability’ Reviewed in the Context of Food around the Mediterranean

    Get PDF

    Time after time:Imprisonment, re-entry and enduring temporariness

    Get PDF
    This chapter aims to address the scant attention that has been paid to time and temporalities in re-entry and re/integration research. Drawing on data from the ‘Distant Voices—Coming Home’ project, which used creative methods to explore re/integration after punishment—we illustrate and analyse three ‘travails’ of penal time. We use the term travails here to stress the significant, difficult and active work involved in addressing these temporal challenges. Respectively, these travails concern the struggles caused by ‘de-synchrony’ between time inside and outside of prison and the problems of ‘re-synchrony’ that it creates; the contestation of ‘readiness’ for progression and release; and the problem of living with the paradox of ‘enduring temporariness’. In our conclusion, we argue that tackling these three challenges requires people re-entering society to travel not just through spaces and to places but also through time, both backwards and forwards. These journeys are fraught with both difficulty and danger

    Rab27a Regulates the Peripheral Distribution of Melanosomes in Melanocytes

    Get PDF
    Rab GTPases are regulators of intracellular membrane traffic. We report a possible function of Rab27a, a protein implicated in several diseases, including Griscelli syndrome, choroideremia, and the Hermansky-Pudlak syndrome mouse model, gunmetal. We studied endogenous Rab27a and overexpressed enhanced GFP-Rab27a fusion protein in several cultured melanocyte and melanoma-derived cell lines. In pigmented cells, we observed that Rab27a decorates melanosomes, whereas in nonpigmented cells Rab27a colocalizes with melanosome-resident proteins. When dominant interfering Rab27a mutants were expressed in pigmented cells, we observed a redistribution of pigment granules with perinuclear clustering. This phenotype is similar to that observed by others in melanocytes derived from the ashen and dilute mutant mice, which bear mutations in the Rab27a and MyoVa loci, respectively. We also found that myosinVa coimmunoprecipitates with Rab27a in extracts from melanocytes and that both Rab27a and myosinVa colocalize on the cytoplasmic face of peripheral melanosomes in wild-type melanocytes. However, the amount of myosinVa in melanosomes from Rab27a-deficient ashen melanocytes is greatly reduced. These results, together with recent data implicating myosinVa in the peripheral capture of melanosomes, suggest that Rab27a is necessary for the recruitment of myosinVa, so allowing the peripheral retention of melanosomes in melanocytes

    An AP-1/clathrin coat plays a novel and essential role in forming the Weibel-Palade bodies of endothelial cells

    Get PDF
    Clathrin provides an external scaffold to form small 50–100-nm transport vesicles. In contrast, formation of much larger dense-cored secretory granules is driven by selective aggregation of internal cargo at the trans-Golgi network; the only known role of clathrin in dense-cored secretory granules formation is to remove missorted proteins by small, coated vesicles during maturation of these spherical organelles. The formation of Weibel-Palade bodies (WPBs) is also cargo driven, but these are cigar-shaped organelles up to 5 μm long. We hypothesized that a cytoplasmic coat might be required to make these very different structures, and we found that new and forming WPBs are extensively, sometimes completely, coated. Overexpression of an AP-180 truncation mutant that prevents clathrin coat formation or reduced AP-1 expression by small interfering RNA both block WPB formation. We propose that, in contrast to other secretory granules, cargo aggregation alone is not sufficient to form immature WPBs and that an external scaffold that contains AP-1 and clathrin is essential

    The Actinomyosin Motor Drives Malaria Parasite Red Blood Cell Invasion but Not Egress.

    Get PDF
    Apicomplexa are obligate intracellular parasites that actively invade, replicate within, and egress from host cells. The parasite actinomyosin-based molecular motor complex (often referred to as the glideosome) is considered an important mediator of parasite motility and virulence. Mature intracellular parasites often become motile just prior to egress from their host cells, and in some genera, this motility is important for successful egress as well as for subsequent invasion of new host cells. To determine whether actinomyosin-based motility is important in the red blood cell egress and invasion activities of the malaria parasite, we have used a conditional genetic approach to delete GAP45, a primary component of the glideosome, in asexual blood stages of Plasmodium falciparum Our results confirm the essential nature of GAP45 for invasion but show that P. falciparum does not require a functional motor complex to undergo egress from the red blood cell. Malarial egress therefore differs fundamentally from induced egress in the related apicomplexan Toxoplasma gondiiIMPORTANCE Clinical malaria results from cycles of replication of single-celled parasites of the genus Plasmodium in red blood cells. Intracellular parasite replication is followed by a highly regulated, protease-dependent process called egress, in which rupture of the bounding membranes allows explosive release of daughter merozoites which rapidly invade fresh red cells. A parasite actinomyosin-based molecular motor (the glideosome) has been proposed to provide the mechanical force to drive invasion. Studies of the related parasite Toxoplasma gondii have shown that induced egress requires parasite motility, mediated by a functional glideosome. However, whether the glideosome has a similar essential role in egress of malaria merozoites from red blood cells is unknown. Here, we show that although a functional glideosome is required for red blood cell invasion by Plasmodium falciparum merozoites, it is not required for egress. These findings place further emphasis on the key role of the protease cascade in malarial egress

    Reintegration, hospitality and hostility:Song-writing and song-sharing in criminal justice

    Get PDF
    Distant Voices is an ongoing, interdisciplinary collaborative action research project, drawing on criminology, community development, politics, practice-led research and songwriting to explore crime, punishment and reintegration through creative conversations that aim to challenge and unsettle understandings of and approaches to rehabilitation and reintegration. In this paper, we discuss some of the thinking behind the project and we reflect on our experiences to date as a community of enquiry. Specifically, we explore the extent to which certain practices of hospitality that we have experienced in processes of collaborative songwriting and song-sharing might mediate and resist the ‘hostile environment’ that faces people leaving prison in many contemporary societies. Drawing on our experience, we argue that hospitality is often disruptive; that creating and sustaining hospitable environments is extremely challenging; and that to do so requires careful thought and planning, including in relation to problems created by the power dynamics intrinsic to criminal justice. The paper includes links to and discussion of one song written in the project – ‘An Open Door’ -- which engages with and illustrates these themes

    Correlative super-resolution fluorescence and electron microscopy using conventional fluorescent proteins in vacuo

    Get PDF
    Super-resolution light microscopy, correlative light and electron microscopy, and volume electron microscopy are revolutionising the way in which biological samples are examined and understood. Here, we combine these approaches to deliver super-accurate correlation of fluorescent proteins to cellular structures. We show that YFP and GFP have enhanced blinking properties when embedded in acrylic resin and imaged under partial vacuum, enabling in vacuo single molecule localisation microscopy. In conventional section-based correlative microscopy experiments, the specimen must be moved between imaging systems and/or further manipulated for optimal viewing. These steps can introduce undesirable alterations in the specimen, and complicate correlation between imaging modalities. We avoided these issues by using a scanning electron microscope with integrated optical microscope to acquire both localisation and electron microscopy images, which could then be precisely correlated. Collecting data from ultrathin sections also improved the axial resolution and signal-to-noise ratio of the raw localisation microscopy data. Expanding data collection across an array of sections will allow 3-dimensional correlation over unprecedented volumes. The performance of this technique is demonstrated on vaccinia virus (with YFP) and diacylglycerol in cellular membranes (with GFP)

    The Physiological Function of von Willebrand's Factor Depends on Its Tubular Storage in Endothelial Weibel-Palade Bodies

    Get PDF
    SummaryWeibel-Palade bodies are the 1–5 μm long rod-shaped storage organelles of endothelial cells. We have investigated the determinants and functional significance of this shape. We find that the folding of the hemostatic protein von Willebrand's factor (VWF) into tubules underpins the rod-like shape of Weibel-Palade bodies. Further, while the propeptide and the N-terminal domains of mature VWF are sufficient to form tubules, their maintenance relies on a pH-dependent interaction between the two. We show that the tubular conformation of VWF is essential for a rapid unfurling of 100 μm long, platelet-catching VWF filaments when exposed to neutral pH after exocytosis in cell culture and in living blood vessels. If tubules are disassembled prior to exocytosis, then short or tangled filaments are released and platelet recruitment is reduced. Thus, a 100-fold compaction of VWF into tubules determines the unique shape of Weibel-Palade bodies and is critical to this protein's hemostatic function
    • …
    corecore