194 research outputs found
The Predictive Relationship Between Psychological Capital and Academic Burnout in Postgraduate Students
Purpose: The purpose of this quantitative correlational study was to determine if, or to what extent, the composite and sub-composite categories of Psychological Capital (PsyCap) predict academic burnout in American postgraduate health science students at a university in the Southeastern United States. Methods: The variables of the study were measured by the Psychological Capital Questionnaire (PCQ-24) and the Maslach Burnout Inventory-Student Survey (MBI-SS). A convenience sampling method was used to collect data from the target population, which included a final sample of 90 health science postgraduate students. Results: A simple linear regression analysis revealed that PsyCap was a significant and negative predictor of academic burnout (F(1,88) = 12.00, p \u3c .001, R2 = 0.12; B = -0.28, t(88) = -3.46, p \u3c .001). Additionally, multiple linear regression analysis revealed that only one sub-category of PsyCap, labeled as Optimism, was a significant and negative predictor of academic burnout (F(4,85) = 5.17, p \u3c .001, R2= 0.20; B = -0.90, t(85) = -3.17, p = .002). Conclusion: The findings may be used by higher education instructors, advisors, and administrators in the United States to adopt policies, practices, programs, student advising, and student mentorship that foster PsyCap and Optimism development in students, which may mitigate the risks and consequences of academic burnout
Astrocyte calcium dysfunction causes early network hyperactivity in Alzheimer's disease
Dysfunctions of network activity and functional connectivity (FC) represent early events in Alzheimer's disease (AD), but the underlying mechanisms remain unclear. Astrocytes regulate local neuronal activity in the healthy brain, but their involvement in early network hyperactivity in AD is unknown. We show increased FC in the human cingulate cortex several years before amyloid deposition. We find the same early cingulate FC disruption and neuronal hyperactivity in AppNL-F mice. Crucially, these network disruptions are accompanied by decreased astrocyte calcium signaling. Recovery of astrocytic calcium activity normalizes neuronal hyperactivity and FC, as well as seizure susceptibility and day/night behavioral disruptions. In conclusion, we show that astrocytes mediate initial features of AD and drive clinically relevant phenotypes
Australia's first fossil marsupial mole (Notoryctemorphia) resolves controversies about their evolution and palaeoenvironmental origins
Fossils of a marsupial mole (Marsupialia, Notoryctemorphia, Notoryctidae) are described from early Miocene deposits in the Riversleigh World Heritage Area, northwestern Queensland, Australia. These represent the first unequivocal fossil record of the order Notoryctemorphia, the two living species of which are among the world's most specialized and bizarre mammals, but which are also convergent on certain fossorial placental mammals (most notably chrysochlorid golden moles). The fossil remains are genuinely ‘transitional', documenting an intermediate stage in the acquisition of a number of specializations and showing that one of these—the dental morphology known as zalambdodonty—was acquired via a different evolutionary pathway than in placentals. They, thus, document a clear case of evolutionary convergence (rather than parallelism) between only distantly related and geographically isolated mammalian lineages—marsupial moles on the island continent of Australia and placental moles on most other, at least intermittently connected continents. In contrast to earlier presumptions about a relationship between the highly specialized body form of the blind, earless, burrowing marsupial moles and desert habitats, it is now clear that archaic burrowing marsupial moles were adapted to and probably originated in wet forest palaeoenvironments, preadapting them to movement through drier soils in the xeric environments of Australia that developed during the Neogene
An exceptionally well-preserved skeleton of Palaeothentes from the Early Miocene of Patagonia, Argentina: new insights into the anatomy of extinct paucituberculatan marsupials
International audienc
Translational pharmacology of an inhaled small molecule αvβ6 integrin inhibitor for idiopathic pulmonary fibrosis
The αvβ6 integrin plays a key role in the activation of transforming growth factor-β (TGFβ), a pro-fibrotic mediator that is pivotal to the development of idiopathic pulmonary fibrosis (IPF). We identified a selective small molecule αvβ6 RGD-mimetic, GSK3008348, and profiled it in a range of disease relevant pre-clinical systems. To understand the relationship between target engagement and inhibition of fibrosis, we measured pharmacodynamic and diseaserelated end points. Here we report, GSK3008348 binds to αvβ6 with high affinity in human IPF lung and reduces downstream pro-fibrotic TGFβ signaling to normal levels. In human lung epithelial cells, GSK3008348 induces rapid internalization and lysosomal degradation of the αvβ6 integrin. In the murine bleomycin-induced lung fibrosis model, GSK3008348 engages αvβ6, induces prolonged inhibition of TGFβ signaling and reduces lung collagen deposition and serum C3M, a marker of IPF disease progression. These studies highlight the potential of inhaled GSK3008348 as an anti-fibrotic therapy
Co-inhibition of SMAD and MAPK signaling enhances 124I uptake in BRAF-mutant thyroid cancers.
Constitutive MAPK activation silences genes required for iodide uptake and thyroid hormone biosynthesis in thyroid follicular cells. Accordingly, most BRAFV600E papillary thyroid cancers (PTC) are refractory to radioiodide (RAI) therapy. MAPK pathway inhibitors rescue thyroid-differentiated properties and RAI responsiveness in mice and patient subsets with BRAFV600E-mutant PTC. TGFB1 also impairs thyroid differentiation and has been proposed to mediate the effects of mutant BRAF. We generated a mouse model of BRAFV600E-PTC with thyroid-specific knockout of the Tgfbr1 gene to investigate the role of TGFB1 on thyroid-differentiated gene expression and RAI uptake in vivo. Despite appropriate loss of Tgfbr1, pSMAD levels remained high, indicating that ligands other than TGFB1 were engaging in this pathway. The activin ligand subunits Inhba and Inhbb were found to be overexpressed in BRAFV600E-mutant thyroid cancers. Treatment with follistatin, a potent inhibitor of activin, or vactosertib, which inhibits both TGFBR1 and the activin type I receptor ALK4, induced a profound inhibition of pSMAD in BRAFV600E-PTCs. Blocking SMAD signaling alone was insufficient to enhance iodide uptake in the setting of constitutive MAPK activation. However, combination treatment with either follistatin or vactosertib and the MEK inhibitor CKI increased 124I uptake compared to CKI alone. In summary, activin family ligands converge to induce pSMAD in Braf-mutant PTCs. Dedifferentiation of BRAFV600E-PTCs cannot be ascribed primarily to activation of SMAD. However, targeting TGFβ/activin-induced pSMAD augmented MAPK inhibitor effects on iodine incorporation into BRAF tumor cells, indicating that these two pathways exert interdependent effects on the differentiation state of thyroid cancer cells
Could Direct Killing by Larger Dingoes Have Caused the Extinction of the Thylacine from Mainland Australia?
Invasive predators can impose strong selection pressure on species that evolved in their absence and drive species to extinction. Interactions between coexisting predators may be particularly strong, as larger predators frequently kill smaller predators and suppress their abundances. Until 3500 years ago the marsupial thylacine was Australia's largest predator. It became extinct from the mainland soon after the arrival of a morphologically convergent placental predator, the dingo, but persisted in the absence of dingoes on the island of Tasmania until the 20th century. As Tasmanian thylacines were larger than dingoes, it has been argued that dingoes were unlikely to have caused the extinction of mainland thylacines because larger predators are rarely killed by smaller predators. By comparing Holocene specimens from the same regions of mainland Australia, we show that dingoes were similarly sized to male thylacines but considerably larger than female thylacines. Female thylacines would have been vulnerable to killing by dingoes. Such killing could have depressed the reproductive output of thylacine populations. Our results support the hypothesis that direct killing by larger dingoes drove thylacines to extinction on mainland Australia. However, attributing the extinction of the thylacine to just one cause is problematic because the arrival of dingoes coincided with another the potential extinction driver, the intensification of the human economy
New Protocetid Whale from the Middle Eocene of Pakistan: Birth on Land, Precocial Development, and Sexual Dimorphism
BACKGROUND: Protocetidae are middle Eocene (49-37 Ma) archaeocete predators ancestral to later whales. They are found in marine sedimentary rocks, but retain four legs and were not yet fully aquatic. Protocetids have been interpreted as amphibious, feeding in the sea but returning to land to rest. METHODOLOGY/PRINCIPAL FINDINGS: Two adult skeletons of a new 2.6 meter long protocetid, Maiacetus inuus, are described from the early middle Eocene Habib Rahi Formation of Pakistan. M. inuus differs from contemporary archaic whales in having a fused mandibular symphysis, distinctive astragalus bones in the ankle, and a less hind-limb dominated postcranial skeleton. One adult skeleton is female and bears the skull and partial skeleton of a single large near-term fetus. The fetal skeleton is positioned for head-first delivery, which typifies land mammals but not extant whales, evidence that birth took place on land. The fetal skeleton has permanent first molars well mineralized, which indicates precocial development at birth. Precocial development, with attendant size and mobility, were as critical for survival of a neonate at the land-sea interface in the Eocene as they are today. The second adult skeleton is the most complete known for a protocetid. The vertebral column, preserved in articulation, has 7 cervicals, 13 thoracics, 6 lumbars, 4 sacrals, and 21 caudals. All four limbs are preserved with hands and feet. This adult is 12% larger in linear dimensions than the female skeleton, on average, has canine teeth that are 20% larger, and is interpreted as male. Moderate sexual dimorphism indicates limited male-male competition during breeding, which in turn suggests little aggregation of food or shelter in the environment inhabited by protocetids. CONCLUSIONS/SIGNIFICANCE: Discovery of a near-term fetus positioned for head-first delivery provides important evidence that early protocetid whales gave birth on land. This is consistent with skeletal morphology enabling Maiacetus to support its weight on land and corroborates previous ideas that protocetids were amphibious. Specimens this complete are virtual 'Rosetta stones' providing insight into functional capabilities and life history of extinct animals that cannot be gained any other way
- …