10 research outputs found

    A New Approach for Checking and Complementing CALIPSO Lidar Calibration

    Get PDF
    We have been studying the backscatter ratio of the two CALIPSO wavelengths for 3 different targets. We are showing the ratio of integrate attenuated backscatter coefficient for cirrus clouds, ocean surface and liquid. Water clouds for one month of nightime data (left:July,right:December), Only opaque cirrus classified as randomly oriented ice[1] are used. For ocean and water clouds, only the clearest shots, determined by a threshold on integrated attenuated backscatter are used. Two things can be immediately observed: 1. A similar trend (black dotted line) is visible using all targets, the color ratio shows a tendency to be higher north and lower south for those two months. 2. The water clouds average value is around 15% lower than ocean surface and cirrus clouds. This is due to the different multiple scattering at 532 nm and 1064 nm [2] which strongly impact the water cloud retrieval. Conclusion: Different targets can be used to improve CALIPSO 1064 nm calibration accuracy. All of them show the signature of an instrumental calibration shift. Multiple scattering introduce a bias in liquid water cloud signal but it still compares very well with all other methods and should not be overlooked. The effect of multiple scattering in liquid and ice clouds will be the subject of future research. If there really is a sampling issue. Combining all methods to increase the sampling, mapping the calibration coefficient or trying to reach an orbit per orbit calibration seems an appropriate way

    Forest Canopy Height Estimation from Calipso Lidar Measurement

    No full text
    The canopy height is an important parameter in aboveground biomass estimation. Lidar remote sensing from airborne or satellite platforms, has a unique capability for forestry applications. This study introduces an innovative concept to estimate canopy height using CALIOP two wavelengths lidar measurements. One main advantage is that the concept proposed here is dependent on the penetration depths at two wavelengths without making assumption about the last peak of waveform as the ground location, and it does not require the ancillary Digital Elevation Model (DEM) data in order to obtain the slope information of terrain. Canopy penetration depths at two wavelengths indicate moderately strong relationships for estimating the canopy height. Results show that the CALIOP-derived canopy heights were highly correlated with the ICESat/GLAS-derived values with a mean RMSE of 3.4 m and correlation coefficient (R) of 0.89. Our findings present a relationship between the penetration difference and canopy height, which can be used as another metrics for canopy height estimation, except the full waveforms

    Forest Canopy Height Estimation from Calipso Lidar Measurement

    No full text
    The canopy height is an important parameter in aboveground biomass estimation. Lidar remote sensing from airborne or satellite platforms, has a unique capability for forestry applications. This study introduces an innovative concept to estimate canopy height using CALIOP two wavelengths lidar measurements. One main advantage is that the concept proposed here is dependent on the penetration depths at two wavelengths without making assumption about the last peak of waveform as the ground location, and it does not require the ancillary Digital Elevation Model (DEM) data in order to obtain the slope information of terrain. Canopy penetration depths at two wavelengths indicate moderately strong relationships for estimating the canopy height. Results show that the CALIOP-derived canopy heights were highly correlated with the ICESat/GLAS-derived values with a mean RMSE of 3.4 m and correlation coefficient (R) of 0.89. Our findings present a relationship between the penetration difference and canopy height, which can be used as another metrics for canopy height estimation, except the full waveforms

    Lidar equation for ocean surface and subsurface

    Get PDF
    International audienceThe lidar equation for ocean at optical wavelengths including subsurface signals is revisited using the recent work of the radiative transfer and ocean color community for passive measurements. The previous form of the specular and subsurface echo term are corrected from their heritage, which originated from passive remote sensing of whitecaps, and is improved for more accurate use in future lidar research. A corrected expression for specular and subsurface lidar return is presented. The previous formalism does not correctly address angular dependency of specular lidar return and overestimates the subsurface term by a factor ranging from 89% to 194% for a nadir pointing lidar. Suggestions for future improvements to the lidar equation are also presented

    Forest Canopy Height Estimation from Calipso Lidar Measurement

    No full text
    The canopy height is an important parameter in aboveground biomass estimation. Lidar remote sensing from airborne or satellite platforms, has a unique capability for forestry applications. This study introduces an innovative concept to estimate canopy height using CALIOP two wavelengths lidar measurements. One main advantage is that the concept proposed here is dependent on the penetration depths at two wavelengths without making assumption about the last peak of waveform as the ground location, and it does not require the ancillary Digital Elevation Model (DEM) data in order to obtain the slope information of terrain. Canopy penetration depths at two wavelengths indicate moderately strong relationships for estimating the canopy height. Results show that the CALIOP-derived canopy heights were highly correlated with the ICESat/GLAS-derived values with a mean RMSE of 3.4 m and correlation coefficient (R) of 0.89. Our findings present a relationship between the penetration difference and canopy height, which can be used as another metrics for canopy height estimation, except the full waveforms

    Retrieval of ocean subsurface particulate backscattering coefficient from space-borne CALIOP lidar measurements

    No full text
    International audienceA new approach has been proposed to determine ocean subsurface particulate backscattering coefficient b from CALIOP 30° off-nadir lidar measurements. The new method also provides estimates of the particle volume scattering function at the 180° scattering angle. The CALIOP based layer-integrated lidar backscatter and particulate backscattering coefficients are compared with the results obtained from MODIS ocean color measurements. The comparison analysis shows that ocean subsurface lidar backscatter and particulate backscattering coefficient bbp can be accurately obtained from CALIOP lidar measurements, thereby supporting the use of space-borne lidar measurements for ocean subsurface studies

    CALIPSO lidar calibration at 532 nm: version 4 nighttime algorithm

    Get PDF
    International audienceData products from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) were recently updated following the implementation of new (version 4) calibration algorithms for all of the Level 1 attenuated backscatter measurements. In this work we present the motivation for and the implementation of the version 4 nighttime 532 nm parallel channel calibration. The nighttime 532 nm calibration is the most fundamental calibration of CALIOP data, since all of CALIOP's other radiometric calibration procedures – i.e., the 532 nm daytime calibration and the 1064 nm calibrations during both nighttime and daytime – depend either directly or indirectly on the 532 nm nighttime calibration. The accuracy of the 532 nm nighttime calibration has been significantly improved by raising the molecular normalization altitude from 30–34 km to the upper possible signal acquisition range of 36–39 km to substantially reduce stratospheric aerosol contamination. Due to the greatly reduced molecular number density and consequently reduced signal-to-noise ratio (SNR) at these higher altitudes, the signal is now averaged over a larger number of samples using data from multiple adjacent granules. Additionally, an enhanced strategy for filtering the radiation-induced noise from high-energy particles was adopted. Further, the meteorological model used in the earlier versions has been replaced by the improved Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), model. An aerosol scattering ratio of 1.01 ± 0.01 is now explicitly used for the calibration altitude. These modifications lead to globally revised calibration coefficients which are, on average, 2–3 % lower than in previous data releases. Further, the new calibration procedure is shown to eliminate biases at high altitudes that were present in earlier versions and consequently leads to an improved representation of stratospheric aerosols. Validation results using airborne lidar measurements are also presented. Biases relative to collocated measurements acquired by the Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) are reduced from 3.6 % ± 2.2 % in the version 3 data set to 1.6 % ± 2.4 % in the version 4 release
    corecore