120 research outputs found

    He II λ\lambda4686 emission from the massive binary system in η\eta Car: constraints to the orbital elements and the nature of the periodic minima

    Get PDF
    {\eta} Carinae is an extremely massive binary system in which rapid spectrum variations occur near periastron. Most notably, near periastron the He II λ4686\lambda 4686 line increases rapidly in strength, drops to a minimum value, then increases briefly before fading away. To understand this behavior, we conducted an intense spectroscopic monitoring of the He II λ4686\lambda 4686 emission line across the 2014.6 periastron passage using ground- and space-based telescopes. Comparison with previous data confirmed the overall repeatability of EW(He II λ4686\lambda 4686), the line radial velocities, and the timing of the minimum, though the strongest peak was systematically larger in 2014 than in 2009 by 26%. The EW(He II λ4686\lambda 4686) variations, combined with other measurements, yield an orbital period 2022.7±0.32022.7\pm0.3 d. The observed variability of the EW(He II λ4686\lambda 4686) was reproduced by a model in which the line flux primarily arises at the apex of the wind-wind collision and scales inversely with the square of the stellar separation, if we account for the excess emission as the companion star plunges into the hot inner layers of the primary's atmosphere, and including absorption from the disturbed primary wind between the source and the observer. This model constrains the orbital inclination to 135135^\circ-153153^\circ, and the longitude of periastron to 234234^\circ-252252^\circ. It also suggests that periastron passage occurred on T0=2456874.4±1.3T_0 = 2456874.4\pm1.3 d. Our model also reproduced EW(He II λ4686\lambda 4686) variations from a polar view of the primary star as determined from the observed He II λ4686\lambda 4686 emission scattered off the Homunculus nebula.Comment: The article contains 23 pages and 17 figures. It has been accepted for publication in Ap

    Stories can change the world – citizen science communication in practice

    Get PDF
    Citizen science, the active participation of the public in scientific research projects, is a rapidly expanding field in open science and open innovation. It provides an integrated model of public knowledge production and engagement with science. As a growing worldwide phenomenon, it is invigorated by evolving new technologies that connect people easily and effectively with the scientific community. Catalysed by citizens’ wishes to be actively involved in scientific processes, as a result of recent societal trends, it also offers contributions to the rise in tertiary education. In addition, citizen science provides a valuable tool for citizens to play a more active role in sustainable development. This book identifies and explains the role of citizen science within innovation in science and society, and as a vibrant and productive science-policy interface. The scope of this volume is global, geared towards identifying solutions and lessons to be applied across science, practice and policy. The chapters consider the role of citizen science in the context of the wider agenda of open science and open innovation, and discuss progress towards responsible research and innovation, two of the most critical aspects of science today

    He II λ4686 emission from the massive binary system in η car: constraints to the orbital elements and the nature of the periodic minima

    Get PDF
    Eta Carinae (η Car) is an extremely massive binary system in which rapid spectrum variations occur near periastron. Most notably, near periastron the He ii λ4686 line increases rapidly in strength, drops to a minimum value, then increases briefly before fading away. To understand this behavior, we conducted an intense spectroscopic monitoring of the He ii λ4686 emission line across the 2014.6 periastron passage using ground- and space-based telescopes. Comparison with previous data confirmed the overall repeatability of the line equivalent width (EW), radial velocities, and the timing of the minimum, though the strongest peak was systematically larger in 2014 than in 2009 by 26%. The EW variations, combined with other measurements, yield an orbital period of 2022.7 ±0.3 days. The observed variability of the EW was reproduced by a model in which the line flux primarily arises at the apex of the wind-wind collision and scales inversely with the square of the stellar separation, if we account for the excess emission as the companion star plunges into the hot inner layers of the primary's atmosphere, and including absorption from the disturbed primary wind between the source and the observer. This model constrains the orbital inclination to 135°-153°, and the longitude of periastron to 234°-252°. It also suggests that periastron passage occurred on days). Our model also reproduced EW variations from a polar view of the primary star as determined from the observed He ii λ4686 emission scattered off the Homunculus nebula.Facultad de Ciencias Astronómicas y Geofísica

    Serum screening with Down's syndrome markers to predict pre-eclampsia and small for gestational age: Systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reliable antenatal identification of pre-eclampsia and small for gestational age is crucial to judicious allocation of monitoring resources and use of preventative treatment with the prospect of improving maternal/perinatal outcome. The purpose of this systematic review was to determine the accuracy of five serum analytes used in Down's serum screening for prediction of pre-eclampsia and/or small for gestational age.</p> <p>Methods</p> <p>The data sources included Medline, Embase, Cochrane library, Medion (inception to February 2007), hand searching of relevant journals, reference list checking of included articles, contact with experts. Two reviewers independently selected the articles in which the accuracy of an analyte used in Downs's serum screening before the 25<sup>th </sup>gestational week was associated with the occurrence of pre-eclampsia and/or small for gestational age without language restrictions. Two authors independently extracted data on study characteristics, quality and results.</p> <p>Results</p> <p>Five serum screening markers were evaluated. 44 studies, testing 169,637 pregnant women (4376 pre-eclampsia cases) and 86 studies, testing 382,005 women (20,339 fetal growth restriction cases) met the selection criteria. The results showed low predictive accuracy overall. For pre-eclampsia the best predictor was inhibin A>2.79MoM positive likelihood ratio 19.52 (8.33,45.79) and negative likelihood ratio 0.30 (0.13,0.68) (single study). For small for gestational age it was AFP>2.0MoM to predict birth weight < 10<sup>th </sup>centile with birth < 37 weeks positive likelihood ratio 27.96 (8.02,97.48) and negative likelihood ratio 0.78 (0.55,1.11) (single study). A potential clinical application using aspirin as a treatment is given as an example.</p> <p>There were methodological and reporting limitations in the included studies thus studies were heterogeneous giving pooled results with wide confidence intervals.</p> <p>Conclusion</p> <p>Down's serum screening analytes have low predictive accuracy for pre-eclampsia and small for gestational age. They may be a useful means of risk assessment or of use in prediction when combined with other tests.</p

    He II λ4686 emission from the massive binary system in η car: constraints to the orbital elements and the nature of the periodic minima

    Get PDF
    Eta Carinae (η Car) is an extremely massive binary system in which rapid spectrum variations occur near periastron. Most notably, near periastron the He ii λ4686 line increases rapidly in strength, drops to a minimum value, then increases briefly before fading away. To understand this behavior, we conducted an intense spectroscopic monitoring of the He ii λ4686 emission line across the 2014.6 periastron passage using ground- and space-based telescopes. Comparison with previous data confirmed the overall repeatability of the line equivalent width (EW), radial velocities, and the timing of the minimum, though the strongest peak was systematically larger in 2014 than in 2009 by 26%. The EW variations, combined with other measurements, yield an orbital period of 2022.7 ±0.3 days. The observed variability of the EW was reproduced by a model in which the line flux primarily arises at the apex of the wind-wind collision and scales inversely with the square of the stellar separation, if we account for the excess emission as the companion star plunges into the hot inner layers of the primary's atmosphere, and including absorption from the disturbed primary wind between the source and the observer. This model constrains the orbital inclination to 135°-153°, and the longitude of periastron to 234°-252°. It also suggests that periastron passage occurred on days). Our model also reproduced EW variations from a polar view of the primary star as determined from the observed He ii λ4686 emission scattered off the Homunculus nebula.Facultad de Ciencias Astronómicas y Geofísica

    Measurement of Spin Density Matrix Elements in Λ(1520) Photoproduction at 8.2 GeV to 8.8 GeV

    Get PDF
    We report on the measurement of spin density matrix elements of the Λ(1520) in the photoproduction reaction γp → Λ(1520)K+, via its subsequent decay to K−p. The measurement was performed as part of the GlueX experimental program in Hall D at Jefferson Lab using a linearly polarized photon beam with Eγ = 8.2 GeV–8.8 GeV. These are the first such measurements in this photon energy range. Results are presented in bins of momentum transfer squared, −(t − t0). We compare the results with a Reggeon exchange model and determine that natural exchange amplitudes are dominant in Λ(1520) photoproduction

    Application of a screening method for cyanobacterial toxins in natural samples

    Get PDF
    Cyanobacterial toxins as microcystins (MCs), nodularins (NODs), Paralytic Shellfish Poisoning (PSP) toxins, anatoxins (ANAs), and cylindrospermopsins (CYNs) with over 100 known varieties, occur worldwide associated with human and animal lethal poisoning.In contrast to all analytical methods for toxin determination are based on LC/MS-MS measurements with Multiple Reaction Monitoring (MRM) the application of Precursor Ion mode allows the coverage of all these structural variants. Although in MRM mode enables a higher sensitivity, a lot of information regarding structural changes is missed. The new generation of Q-TRAPs combines the advantages of quadrupoles having a high selectivity with the high sensitivity of ion-trap systems. Here we published results, showing the suitability of Precursor Ion mode for detection of cyanobacterial toxins extracted from phytoplankton
    corecore