147 research outputs found

    Superconductive proximity in a Topological Insulator slab and excitations bound to an axial vortex

    Full text link
    We consider the proximity effect in a Topological Insulator sandwiched between two conventional superconductors, by comparing s-wave spin singlet superconducting pairing correlations and odd-parity triplet pairing correlations with zero spin component orthogonal to the slab ("polar " phase). A superconducting gap opens in the Dirac dispersion of the surface states existing at the interfaces. An axial vortex is included, piercing the slab along the normal to the interfaces with the superconductors. It is known that, when proximity is s-wave, quasiparticles in the gap are Majorana Bound States, localized at opposite interfaces. We report the full expression for the quantum field associated to the midgap neutral fermions, as derived in the two-orbital band model for the TI. When proximity involves odd-parity pairing, midgap modes are charged Surface Andreev Bound States, and they originate from interfacial circular states of definite chirality, centered at the vortex singularity and decaying in the TI film with oscillations. When the chemical potential is moved away from midgap, extended states along the vortex axis are also allowed. Their orbital structure depends on the symmetry of the bulk band from where the quasiparticle level splits off.Comment: 13 pages no figures, accepted for publication in Phys. Rev.

    Quantum interference of electrons in a ring: tuning of the geometrical phase

    Full text link
    We calculate the oscillations of the DC conductance across a mesoscopic ring, simultaneously tuned by applied magnetic and electric fields orthogonal to the ring. The oscillations depend on the Aharonov-Bohm flux and of the spin-orbit coupling. They result from mixing of the dynamical phase, including the Zeeman spin splitting, and of geometric phases. By changing the applied fields, the geometric phase contribution to the conductance oscillations can be tuned from the adiabatic (Berry) to the nonadiabatic (Ahronov-Anandan) regime. To model a realistic device, we also include nonzero backscattering at the connection between ring and contacts, and a random phase for electron wavefunction, accounting for dephasing due to disorder.Comment: 4 pages, 3 figures, minor change

    Coherent response of a low T_c Josephson junction to an ultrafast laser pulse

    Full text link
    By irradiating with a single ultrafast laser pulse a superconducting electrode of a Josephson junction it is possible to drive the quasiparticles (qp's) distribution strongly out of equilibrium. The behavior of the Josephson device can, thus, be modified on a fast time scale, shorter than the qp's relaxation time. This could be very useful, in that it allows fast control of Josephson charge qubits and, in general, of all Josephson devices. If the energy released to the top layer contact S1S1 of the junction is of the order of ∼μJ\sim \mu J, the coherence is not degradated, because the perturbation is very fast. Within the framework of the quasiclassical Keldysh Green's function theory, we find that the order parameter of S1S1 decreases. We study the perturbed dynamics of the junction, when the current bias is close to the critical current, by integrating numerically its classical equation of motion. The optical ultrafast pulse can produce switchings of the junction from the Josephson state to the voltage state. The switches can be controlled by tuning the laser light intensity and the pulse duration of the Josephson junction.Comment: 17 pages, 5 figure

    Advantages of using YBCO-Nanowire-YBCO heterostructures in the search for Majorana Fermions

    Full text link
    We propose an alternative platform to observe Majorana bound states in solid state systems. High critical temperature cuprate superconductors can induce superconductivity, by proximity effect, in quasi one dimensional nanowires with strong spin orbit coupling. They favor a wider and more robust range of conditions to stabilize Majorana fermions due to the large gap values, and offer novel functionalities in the design of the experiments determined by different dispersion for Andreev bound states as a function of the phase difference.Comment: 4 Pages, 3 figures, submission date 30-Apr-201

    Spin Hall effect in a two-dimensional electron gas in the presence of a magnetic field

    Full text link
    We study the spin Hall effect of a two-dimensional electron gas in the presence of a magnetic field and both the Rashba and Dresselhaus spin-orbit interactions. We show that the value of the spin Hall conductivity, which is finite only if the Zeeman spin splitting is taken into account, may be tuned by varying the ratio of the in-plane and out-of-plane components of the applied magnetic field. We identify the origin of this behavior with the different role played by the interplay of spin-orbit and Zeeman couplings for in-plane and out-of-plane magnetic field components.Comment: 5 pages, 5 figures, submitte

    a review

    Get PDF
    In this review article we describe spin-dependent transport in materials with spin–orbit interaction of Rashba type. We mainly focus on semiconductor heterostructures, however we consider topological insulators, graphene and hybrid structures involving superconductors as well. We start from the Rashba Hamiltonian in a two dimensional electron gas and then describe transport properties of two- and quasi-one-dimensional systems. The problem of spin current generation and interference effects in mesoscopic devices is described in detail. We address also the role of Rashba interaction on localisation effects in lattices with nontrivial topology, as well as on the Ahronov–Casher effect in ring structures. A brief section, in the end, describes also some related topics including the spin-Hall effect, the transition from weak localisation to weak anti localisation and the physics of Majorana fermions in hybrid heterostructures involving Rashba materials in the presence of superconductivity

    Thermal transport driven by charge imbalance in graphene in magnetic field, close to the charge neutrality point at low temperature: Non local resistance

    Full text link
    Graphene grown epitaxially on SiC, close to the charge neutrality point (CNP), in an orthogonal magnetic field shows an ambipolar behavior of the transverse resistance accompanied by a puzzling longitudinal magnetoresistance. When injecting a transverse current at one end of the Hall bar, a sizeable non local transverse magnetoresistance is measured at low temperature. While Zeeman spin effect seems not to be able to justify these phenomena, some dissipation involving edge states at the boundaries could explain the order of magnitude of the non local transverse magnetoresistance, but not the asymmetry when the orientation of the orthogonal magnetic field is reversed. As a possible contribution to the explanation of the measured non local magnetoresistance which is odd in the magnetic field, we derive a hydrodynamic approach to transport in this system, which involves particle and hole Dirac carriers, in the form of charge and energy currents. We find that thermal diffusion can take place on a large distance scale, thanks to long recombination times, provided a non insulating bulk of the Hall bar is assumed, as recent models seem to suggest in order to explain the appearance of the longitudinal resistance. In presence of the local source, some leakage of carriers from the edges generates an imbalance of carriers of opposite sign, which are separated in space by the magnetic field and diffuse along the Hall bar generating a non local transverse voltage.Comment: 25 pages, 12 figure
    • …
    corecore