Thermal transport driven by charge imbalance in graphene in magnetic
field, close to the charge neutrality point at low temperature: Non local
resistance
Graphene grown epitaxially on SiC, close to the charge neutrality point
(CNP), in an orthogonal magnetic field shows an ambipolar behavior of the
transverse resistance accompanied by a puzzling longitudinal magnetoresistance.
When injecting a transverse current at one end of the Hall bar, a sizeable non
local transverse magnetoresistance is measured at low temperature. While Zeeman
spin effect seems not to be able to justify these phenomena, some dissipation
involving edge states at the boundaries could explain the order of magnitude of
the non local transverse magnetoresistance, but not the asymmetry when the
orientation of the orthogonal magnetic field is reversed. As a possible
contribution to the explanation of the measured non local magnetoresistance
which is odd in the magnetic field, we derive a hydrodynamic approach to
transport in this system, which involves particle and hole Dirac carriers, in
the form of charge and energy currents. We find that thermal diffusion can take
place on a large distance scale, thanks to long recombination times, provided a
non insulating bulk of the Hall bar is assumed, as recent models seem to
suggest in order to explain the appearance of the longitudinal resistance. In
presence of the local source, some leakage of carriers from the edges generates
an imbalance of carriers of opposite sign, which are separated in space by the
magnetic field and diffuse along the Hall bar generating a non local transverse
voltage.Comment: 25 pages, 12 figure