12,839 research outputs found

    IFN-gamma-mediated suppression of coronavirus replication in glial-committed progenitor cells.

    Get PDF
    The neurotropic JHM strain of mouse hepatitis virus (JHMV) replicates primarily within glial cells following intracranial inoculation of susceptible mice, with relative sparing of neurons. This study demonstrates that glial cells derived from neural progenitor cells are susceptible to JHMV infection and that treatment of infected cells with IFN-gamma inhibits viral replication in a dose-dependent manner. Although type I IFN production is muted in JHMV-infected glial cultures, IFN-beta is produced following IFN-gamma-treatment of JHMV-infected cells. Also, direct treatment of infected glial cultures with recombinant mouse IFN-alpha or IFN-beta inhibits viral replication. IFN-gamma-mediated control of JHMV replication is dampened in glial cultures derived from the neural progenitor cells of type I receptor knock-out mice. These data indicate that JHMV is capable of infecting glial cells generated from neural progenitor cells and that IFN-gamma-mediated control of viral replication is dependent, in part, on type I IFN secretion

    It's all about timing : an electrophysiological examination of feedback-based learning with immediate and delayed feedback

    No full text
    Feedback regarding an individual's action can occur immediately or with a temporal delay. Processing of feedback that varies in its delivery time is proposed to engage different brain mechanisms. fMRI data implicate the striatum in the processing of immediate feedback, and the medial temporal lobe (MTL) in the processing of delayed feedback. The present study offers an electrophysiological examination of feedback processing in the context of timing, by studying the effects of feedback timing on the feedback-related negativity (FRN), a product of the midbrain dopamine system, and elucidating whether the N170 ERP component could capture MTL activation associated with the processing of delayed feedback. Participants completed a word-object paired association learning task; they received feedback 500 ms (immediate feedback condition) following a button press during the learning of two sets of 14 items, and at a delay of 6500 ms (delayed feedback condition) during the learning of the other two sets. The results indicated that while learning outcomes did not differ under the two timing conditions, Event Related Potential (ERPs) pointed to differential activation of the examined ERP components. FRN amplitude was found to be larger following the immediate feedback condition when compared with the delayed feedback condition, and sensitive to valence and learning only under the immediate feedback condition. Additionally, the amplitude of the N170 was found larger following the delayed feedback condition when compared with the immediate feedback condition. Taken together, the findings of the present study support the contention that the processing of delayed feedback involves a shift away from midbrain dopamine activation to the recruitment of the MTL

    On the formation and physical properties of the Intra-Cluster Light in hierarchical galaxy formation models

    Full text link
    We study the formation of the Intra-Cluster Light (ICL) using a semi-analytic model of galaxy formation, coupled to merger trees extracted from N-body simulations of groups and clusters. We assume that the ICL forms by (1) stellar stripping of satellite galaxies and (2) relaxation processes that take place during galaxy mergers. The fraction of ICL in groups and clusters predicted by our models ranges between 10 and 40 per cent, with a large halo-to-halo scatter and no halo mass dependence. We note, however, that our predicted ICL fractions depend on the resolution: for a set of simulations with particle mass one order of magnitude larger than that adopted in the high resolution runs used in our study, we find that the predicted ICL fractions are ~30-40 per cent larger than those found in the high resolution runs. On cluster scale, large part of the scatter is due to a range of dynamical histories, while on smaller scale it is driven by individual accretion events and stripping of very massive satellites, M1010.5MM_{*} \gtrsim 10^{10.5} M_{\odot}, that we find to be the major contributors to the ICL. The ICL in our models forms very late (below z1z\sim 1), and a fraction varying between 5 and 25 per cent of it has been accreted during the hierarchical growth of haloes. In agreement with recent observational measurements, we find the ICL to be made of stars covering a relatively large range of metallicity, with the bulk of them being sub-solar.Comment: Accepted for Publication in MNRAS, 19 pages, 13 figures, 1 tabl

    Using action understanding to understand the left inferior parietal cortex in the human brain

    Full text link
    Published in final edited form as: Brain Res. 2014 September 25; 1582: 64–76. doi:10.1016/j.brainres.2014.07.035.Humans have a sophisticated knowledge of the actions that can be performed with objects. In an fMRI study we tried to establish whether this depends on areas that are homologous with the inferior parietal cortex (area PFG) in macaque monkeys. Cells have been described in area PFG that discharge differentially depending upon whether the observer sees an object being brought to the mouth or put in a container. In our study the observers saw videos in which the use of different objects was demonstrated in pantomime; and after viewing the videos, the subject had to pick the object that was appropriate to the pantomime. We found a cluster of activated voxels in parietal areas PFop and PFt and this cluster was greater in the left hemisphere than in the right. We suggest a mechanism that could account for this asymmetry, relate our results to handedness and suggest that they shed light on the human syndrome of apraxia. Finally, we suggest that during the evolution of the hominids, this same pantomime mechanism could have been used to ‘name’ or request objects.We thank Steve Wise for very detailed comments on a draft of this paper. We thank Rogier Mars for help with identifying the areas that were activated in parietal cortex and for comments on a draft of this paper. Finally, we thank Michael Nahhas for help with the imaging figures. This work was supported in part by the NIH grant RO1NS064100 to LMV. (RO1NS064100 - NIH)Accepted manuscrip

    Milky Way type galaxies in a LCDM cosmology

    Get PDF
    We analyse a sample of 52,000 Milky Way (MW) type galaxies drawn from the publicly available galaxy catalogue of the Millennium Simulation with the aim of studying statistically the differences and similarities of their properties in comparison to our Galaxy. Model galaxies are chosen to lie in haloes with maximum circular velocities in the range 200-250 km/seg and to have bulge-to-disk ratios similar to that of the Milky Way. We find that model MW galaxies formed quietly through the accretion of cold gas and small satellite systems. Only 12 per cent of our model galaxies experienced a major merger during their lifetime. Most of the stars formed in situ, with only about 15 per cent of the final mass gathered through accretion. Supernovae and AGN feedback play an important role in the evolution of these systems. At high redshifts, when the potential wells of the MW progenitors are shallower, winds driven by supernovae explosions blow out a large fraction of the gas and metals. As the systems grow in mass, SN feedback effects decrease and AGN feedback takes over, playing a more important role in the regulation of the star formation activity at lower redshifts. Although model Milky Way galaxies have been selected to lie in a narrow range of maximum circular velocities, they nevertheless exhibit a significant dispersion in the final stellar masses and metallicities. Our analysis suggests that this dispersion results from the different accretion histories of the parent dark matter haloes. Statically, we also find evidences to support the Milky Way as a typical Sb/Sc galaxy in the same mass range, providing a suitable benchmark to constrain numerical models of galaxy formationComment: 10 pages, 7 figures, mne2.cls, MNRAS, replaced with accepted versio

    Approximate Methods for State-Space Models

    Full text link
    State-space models provide an important body of techniques for analyzing time-series, but their use requires estimating unobserved states. The optimal estimate of the state is its conditional expectation given the observation histories, and computing this expectation is hard when there are nonlinearities. Existing filtering methods, including sequential Monte Carlo, tend to be either inaccurate or slow. In this paper, we study a nonlinear filter for nonlinear/non-Gaussian state-space models, which uses Laplace's method, an asymptotic series expansion, to approximate the state's conditional mean and variance, together with a Gaussian conditional distribution. This {\em Laplace-Gaussian filter} (LGF) gives fast, recursive, deterministic state estimates, with an error which is set by the stochastic characteristics of the model and is, we show, stable over time. We illustrate the estimation ability of the LGF by applying it to the problem of neural decoding and compare it to sequential Monte Carlo both in simulations and with real data. We find that the LGF can deliver superior results in a small fraction of the computing time.Comment: 31 pages, 4 figures. Different pagination from journal version due to incompatible style files but same content; the supplemental file for the journal appears here as appendices B--E

    A scalable hardware and software control apparatus for experiments with hybrid quantum systems

    Get PDF
    Modern experiments with fundamental quantum systems - like ultracold atoms, trapped ions, single photons - are managed by a control system formed by a number of input/output electronic channels governed by a computer. In hybrid quantum systems, where two or more quantum systems are combined and made to interact, establishing an efficient control system is particularly challenging due to the higher complexity, especially when each single quantum system is characterized by a different timescale. Here we present a new control apparatus specifically designed to efficiently manage hybrid quantum systems. The apparatus is formed by a network of fast communicating Field Programmable Gate Arrays (FPGAs), the action of which is administrated by a software. Both hardware and software share the same tree-like structure, which ensures a full scalability of the control apparatus. In the hardware, a master board acts on a number of slave boards, each of which is equipped with an FPGA that locally drives analog and digital input/output channels and radiofrequency (RF) outputs up to 400 MHz. The software is designed to be a general platform for managing both commercial and home-made instruments in a user-friendly and intuitive Graphical User Interface (GUI). The architecture ensures that complex control protocols can be carried out, such as performing of concurrent commands loops by acting on different channels, the generation of multi-variable error functions and the implementation of self-optimization procedures. Although designed for managing experiments with hybrid quantum systems, in particular with atom-ion mixtures, this control apparatus can in principle be used in any experiment in atomic, molecular, and optical physics.Comment: 10 pages, 12 figure

    Magellan/MMIRS near-infrared multi-object spectroscopy of nebular emission from star forming galaxies at 2<z<3

    Full text link
    To investigate the ingredients, which allow star-forming galaxies to present Lyalpha line in emission, we studied the kinematics and gas phase metallicity (Z) of the interstellar medium. We used multi-object NIR spectroscopy with Magellan/MMIRS to study nebular emission from z=2-3 star-forming galaxies discovered in 3 MUSYC fields. We detected emission lines from four active galactic nuclei and 13 high-z star-forming galaxies, including Halpha lines down to a flux of 4.E-17 erg/sec/cm^2. This yielded 7 new redshifts. The most common emission line detected is [OIII]5007, which is sensitive to Z. We were able to measure Z for 2 galaxies and to set upper(lower) limits for another 2(2). The Z values are consistent with 0.3<Z/Zsun<1.2. Comparing the Lyalpha central wavelength with the systemic redshift, we find Delta_v(Lyalpha-[OIII])=70-270 km/sec. High-redshift star-forming galaxies, Lyalpha emitting (LAE) galaxies, and Halpha emitters appear to be located in the low mass, high star-formation rate (SFR) region of the SFR versus stellar mass diagram, confirming that they are experiencing burst episodes of star formation, which are building up their stellar mass. Their Zs are consistent with the relation found for z<2.2 galaxies in the Z versus stellar mass plane. The measured Delta_v(Lyalpha-[OIII]) values imply that outflows of material, driven by star formation, could be present in the z=2-3 LAEs of our sample. Comparing with the literature, we note that galaxies with lower Z than ours are also characterized by similar Delta_v(Lyalpha-[OIII]) velocity offsets. Strong [OIII] is detected in many Lyalpha emitters. Therefore, we propose the Lyalpha/[OIII] flux ratio as a tool for the study of high-z galaxies; while influenced by Z, ionization, and Lyalpha radiative transfer in the ISM, it may be possible to calibrate this ratio to primarily trace one of these effects.Comment: 22 pages, 13 figures, 6 table
    corecore