215 research outputs found
Impaired DNA replication within progenitor cell pools promotes leukemogenesis.
Impaired cell cycle progression can be paradoxically associated with increased rates of malignancies. Using retroviral transduction of bone marrow progenitors followed by transplantation into mice, we demonstrate that inhibition of hematopoietic progenitor cell proliferation impairs competition, promoting the expansion of progenitors that acquire oncogenic mutations which restore cell cycle progression. Conditions that impair DNA replication dramatically enhance the proliferative advantage provided by the expression of Bcr-Abl or mutant p53, which provide no apparent competitive advantage under conditions of healthy replication. Furthermore, for the Bcr-Abl oncogene the competitive advantage in contexts of impaired DNA replication dramatically increases leukemogenesis. Impaired replication within hematopoietic progenitor cell pools can select for oncogenic events and thereby promote leukemia, demonstrating the importance of replicative competence in the prevention of tumorigenesis. The demonstration that replication-impaired, poorly competitive progenitor cell pools can promote tumorigenesis provides a new rationale for links between tumorigenesis and common human conditions of impaired DNA replication such as dietary folate deficiency, chemotherapeutics targeting dNTP synthesis, and polymorphisms in genes important for DNA metabolism
The AnimALT-ZEBET Database: A Unique Resource for Comprehensive and Value-Added Information on 3R Alternatives
Evaluation of value-added databases represents the most reasonable starting point for any structured search for information on suitable alternative methods. This source provides clear, comprehensive and reliable reviews on the most advanced procedures with relevance to the 3R concept.At the forefront of these essential resources is the AnimAlt-ZEBET database offered by the German Federal Institute for Risk Assessment (BfR) and accessible online free of charge. The documents of this database compiled by scientific experts provide selected and condensed high-quality information in compliance with specific requirements of scientists, competent authorities and others who are obliged to consider the applicability of specific alternative methods. Thus, the focus of AnimAlt-ZEBET is on (1) essential technical key points, (2) application domains, (3) advances/limitations of the most elaborate protocols, (4) prediction models, (5) opinion(s) of expert panels (e.g. ESAC; ICCVAM), (6) status of validation and acceptance and, most notably, (7) contribution of the respective methods to 3R. Because the documents of the database are written in a structured manner, they can be used as the feedstock for any up-to-date text mining application, like "semantic landscape"-producing tools. The database currently holds some 140 documents focusing on safety testing of chemicals and drugs, but soon will be expanded to basic sciences as wel
k-Space tutorial: an MRI educational tool for a better understanding of k-space
A main difference between Magnetic Resonance (MR) imaging and other medical imaging modalities is the control over the data acquisition and how it can be managed to finally show the adequate reconstructed image. With some basic programming adjustments, the user can modify the spatial resolution, field of view (FOV), image contrast, acquisition velocity, artifacts and so many other parameters that will contribute to form the final image. The main character and agent of all this control is called k-space, which represents the matrix where the MR data will be stored previously to a Fourier transformation to obtain the desired image
Conformational studies of stereoisomeric tetraols serived form syn- and anti-dibenzo [a,l]pyrene diolepoxides
An understanding of the conformational behavior of the stereoisomeric tetrols at the 11,12,13,14-positions of dibenzo[a,l]pyrene (DB[a,l]P) is essential for the spectroscopic identification of DNA adducts derived from the biologically highly active fjord region syn- and anti-DB[a,l]P-11,12- diol 13,14-epoxides. Conformational effects are expected to play an important role in DNA-DB[a,l]P diol epoxide reactivity, base-sequence specificity, and conformation dependent repair. The results of conformational studies on trans-anti-, cis-anti-, and cis-syn-DB[a,l]P tetrol isomers are presented and compared to the results obtained previously for trans-syn-DB[a,l]P tetrol (Carcinogenesis 17, 829-837, 1996). Molecular mechanics, dynamical simulations, and semiempirical calculations of electronic transitions are used to interpret the low-temperature fluorescence spectra an
TCRs with segment TRAV9-2 or a CDR3 histidine are overrepresented among nickel-specific CD4+ T cells
Background: Nickel is the most frequent cause of T cell-mediated allergic contact dermatitis worldwide. In vitro, CD4+ T cells from all donors respond to nickel but the involved αβ T cell receptor (TCR) repertoire has not been comprehensively analyzed. Methods: We introduce CD154 (CD40L) upregulation as a fast, unbiased, and quantitative method to detect nickel-specific CD4+ T cells ex vivo in blood of clinically characterized allergic and non allergic donors. Naïve (CCR7+ CD45RA+) and memory (not naïve) CD154+ CD4+ T cells were analyzed by flow cytometry after 5 hours of stimulation with 200 µmol/L NiSO4 ., TCR α- and β-chains of sorted nickel-specific and control cells were studied by high-throughput sequencing. Results: Stimulation of PBMCs with NiSO4 induced CD154 expression on ~0.1% (mean) of naïve and memory CD4+ T cells. In allergic donors with recent positive patch test, memory frequencies further increased ~13-fold and were associated with markers of in vivo activation. CD154 expression was TCR-mediated since single clones could be specifically restimulated. Among nickel-specific CD4+ T cells of allergic and non allergic donors, TCRs expressing the α-chain segment TRAV9-2 or a histidine in their α- or β-chain complementarity determining region 3 (CDR3) were highly overrepresented. Conclusions: Induced CD154 expression represents a reliable method to study nickel-specific CD4+ T cells. TCRs with particular features respond in all donors, while strongly increased blood frequencies indicate nickel allergy for some donors. Our approach may be extended to other contact allergens for the further development of diagnostic and predictive in vitro tests
COSMIC 2005
The Catalogue Of Somatic Mutations In Cancer (COSMIC) database and web site was developed to preserve somatic mutation data and share it with the community. Over the past 25 years, approximately 350 cancer genes have been identified, of which 311 are somatically mutated. COSMIC has been expanded and now holds data previously reported in the scientific literature for 28 known cancer genes. In addition, there is data from the systematic sequencing of 518 protein kinase genes. The total gene count in COSMIC stands at 538; 25 have a mutation frequency above 5% in one or more tumour type, no mutations were found in 333 genes and 180 are rarely mutated with frequencies <5% in any tumour set. The COSMIC web site has been expanded to give more views and summaries of the data and provide faster query routes and downloads. In addition, there is a new section describing mutations found through a screen of known cancer genes in 728 cancer cell lines including the NCI-60 set of cancer cell lines
t4 Report Metabolomics in Toxicology and Preclinical Research
Metabolomics, the comprehensive analysis of metabolites in a biological system, provides detailed information about the biochemical/physiological status of a biological system, and about the changes caused by chemicals. Metabolomics analysis is used in many fields, ranging from the analysis of the physiological status of genetically modified organisms in safety science to the evaluation of human health conditions. In toxicology, metabolomics is the -omics discipline that is most closely related to classical knowledge of disturbed biochemical pathways. It allows rapid identification of the potential targets of a hazardous compound. It can give information on target organs and often can help to improve our understanding regarding the mode-of-action of a given compound. Such insights aid the discovery of biomarkers that either indicate pathophysiological conditions or help the monitoring of the efficacy of drug therapies. The first toxicological applications of metabolomics were for mechanistic research, but different ways to use the technology in a regulatory context are being explored. Ideally, further progress in that direction will position the metabolomics approach to address the challenges of toxicology of the 21st century. To address these issues, scientists from academia, industry, and regulatory bodies came together in a workshop to discuss the current status of applied metabolomics and its potential in the safety assessment of compounds. We report here on the conclusions of three working groups addressing questions regarding 1) metabolomics for in vitro studies 2) the appropriate use of metabolomics in systems toxicology, and 3) use of metabolomics in a regulatory contex
Analysis of benzo[a]pyrene metabolites formed by rat hepatic microsomes using high pressure liquid chromatography: optimization of the method
A simple and sensitive method was developed to separate the carcinogenic polycyclic aromatic hydrocarbon (PAH), benzo[a]pyrene (BaP), and six of its oxidation metabolites generated by rat hepatic microsomes enriched with cytochrome P450 (CYP) 1A1, by high pressure liquid chromatography (HPLC). The HPLC method, using an acetonitrile/water gradient as mobile phase and UV detection, provided appropriate separation and detection of both mono- and di-hydroxylated metabolites of BaP as well as BaP diones formed by rat hepatic microsomes and the parental BaP. In this enzymatic system, 3-hydroxy BaP, 9-hydroxy BaP, BaP-4,5-dihydrodiol, BaP-7,8-dihydrodiol, BaP-9,10-dihydrodiol and BaP-dione were generated. Among them the mono-hydroxylated BaP metabolite, 3-hydroxy BaP followed by di-hydroxylated BaP products, BaP-7,8-dihydrodiol and BaP-9,10-dihydrodiol, predominated, while BaP-dione was a minor metabolite. This HPLC method will be useful for further defining the roles of the CYP1A1 enzyme with both in vitro and in vivo models in understanding its real role in activation and detoxification of BaP
Antitumour 2-(4-aminophenyl)benzothiazoles generate DNA adducts in sensitive tumour cells in vitro and in vivo
2-(4-Aminophenyl)benzothiazoles represent a potent and highly selective class of antitumour agent. In vitro, sensitive carcinoma cells deplete 2-(4-aminophenyl)benzothiazoles from nutrient media; cytochrome P450 1A1 activity, critical for execution of antitumour activity, and protein expression are powerfully induced. 2-(4-Amino-3-methylphenyl)benzothiazole-derived covalent binding to cytochrome P450 1A1 is reduced by glutathione, suggesting 1A1-dependent production of a reactive electrophilic species. In vitro, 2-(4-aminophenyl)benzothiazole-generated DNA adducts form in sensitive tumour cells only. At concentrations >100 nM, adducts were detected in DNA of MCF-7 cells treated with 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203). 5F 203 (1 μM) led to the formation of one major and a number of minor adducts. However, treatment of cells with 10 μM 5F 203 resulted in the emergence of a new dominant adduct. Adducts accumulated steadily within DNA of MCF-7 cells exposed to 1 μM 5F 203 between 2 and 24 h. Concentrations of the lysylamide prodrug of 5F 203 (Phortress) ≥100 nM generated adducts in the DNA of sensitive MCF-7 and IGROV-1 ovarian cells. At 1 μM, one major Phortress-derived DNA adduct was detected in these two sensitive phenotypes; 10 μM Phortress led to the emergence of an additional major adduct detected in the DNA of MCF-7 cells. Inherently resistant MDA-MB-435 breast carcinoma cells incurred no DNA damage upon exposure to Phortress (⩽10 μM, 24 h). In vivo, DNA adducts accumulated within sensitive ovarian IGROV-1 and breast MCF-7 xenografts 24 h after treatment of mice with Phortress (20 mg kg−1). Moreover, Phortress-derived DNA adduct generation distinguished sensitive MCF-7 tumours from inherently resistant MDA-MB-435 xenografts implanted in opposite flanks of the same mouse
Zebrafish Whole-Adult-Organism Chemogenomics for Large-Scale Predictive and Discovery Chemical Biology
The ability to perform large-scale, expression-based chemogenomics on whole adult organisms, as in invertebrate models (worm and fly), is highly desirable for a vertebrate model but its feasibility and potential has not been demonstrated. We performed expression-based chemogenomics on the whole adult organism of a vertebrate model, the zebrafish, and demonstrated its potential for large-scale predictive and discovery chemical biology. Focusing on two classes of compounds with wide implications to human health, polycyclic (halogenated) aromatic hydrocarbons [P(H)AHs] and estrogenic compounds (ECs), we generated robust prediction models that can discriminate compounds of the same class from those of different classes in two large independent experiments. The robust expression signatures led to the identification of biomarkers for potent aryl hydrocarbon receptor (AHR) and estrogen receptor (ER) agonists, respectively, and were validated in multiple targeted tissues. Knowledge-based data mining of human homologs of zebrafish genes revealed highly conserved chemical-induced biological responses/effects, health risks, and novel biological insights associated with AHR and ER that could be inferred to humans. Thus, our study presents an effective, high-throughput strategy of capturing molecular snapshots of chemical-induced biological states of a whole adult vertebrate that provides information on biomarkers of effects, deregulated signaling pathways, and possible affected biological functions, perturbed physiological systems, and increased health risks. These findings place zebrafish in a strategic position to bridge the wide gap between cell-based and rodent models in chemogenomics research and applications, especially in preclinical drug discovery and toxicology
- …
