2,559 research outputs found
Camera trap arrays improve detection probability of wildlife: Investigating study design considerations using an empirical dataset.
Camera trapping is a standard tool in ecological research and wildlife conservation. Study designs, particularly for small-bodied or cryptic wildlife species often attempt to boost low detection probabilities by using non-random camera placement or baited cameras, which may bias data, or incorrectly estimate detection and occupancy. We investigated the ability of non-baited, multi-camera arrays to increase detection probabilities of wildlife. Study design components were evaluated for their influence on wildlife detectability by iteratively parsing an empirical dataset (1) by different sizes of camera arrays deployed (1-10 cameras), and (2) by total season length (1-365 days). Four species from our dataset that represented a range of body sizes and differing degrees of presumed detectability based on life history traits were investigated: white-tailed deer (Odocoileus virginianus), bobcat (Lynx rufus), raccoon (Procyon lotor), and Virginia opossum (Didelphis virginiana). For all species, increasing from a single camera to a multi-camera array significantly improved detection probability across the range of season lengths and number of study sites evaluated. The use of a two camera array increased survey detection an average of 80% (range 40-128%) from the detection probability of a single camera across the four species. Species that were detected infrequently benefited most from a multiple-camera array, where the addition of up to eight cameras produced significant increases in detectability. However, for species detected at high frequencies, single cameras produced a season-long (i.e, the length of time over which cameras are deployed and actively monitored) detectability greater than 0.75. These results highlight the need for researchers to be critical about camera trap study designs based on their intended target species, as detectability for each focal species responded differently to array size and season length. We suggest that researchers a priori identify target species for which inference will be made, and then design camera trapping studies around the most difficult to detect of those species
Investigating diversity of pathogenic microbes in commercial bait trade water
The recreational bait trade is a potential pathway for pathogen introduction and spread when anglers dump bait shop sourced water into aquatic systems. Despite this possibility, and previous recognition of the importance of the bait trade in the spread of aquatic invasive species (AIS), to date there has been no region wide survey documenting pathogens in retail bait shops. In this study, we analyzed 96 environmental DNA samples from retail bait shops around the Great Lakes region to identify pathogens, targeting the V4 hypervariable region of the 16S rRNA gene. Additionally, we used samples from one site in Lake Michigan as a comparison to pathogen diversity and abundance in natural aquatic systems. Our results identified nine different groups of pathogens in the bait shop samples, including those that pose risks to both humans and fish species. Compared to wild sourced samples, the bait shops had higher relative abundance and greater taxonomic diversity. These findings suggest that the bait trade represents a potentially important pathway that could introduce and spread pathogens throughout the Great Lakes region. Improving pathogen screening and angler outreach should be used in combination to aid in preventing the future spread of high risk pathogens
Diurnal and Seasonal Mapping of Martian Ices With EMIRS
Condensation and sublimation of ices at the surface of the planet is a key
part of both the Martian HO and CO cycles, either from a seasonal or
diurnal aspect. While most of the ice is located within the polar caps, surface
frost is known to be formed during nighttime down to equatorial latitudes.
Here, we use data from the Emirates Mars Infrared Spectrometer (EMIRS) onboard
the Emirates Mars Mission (EMM) to monitor the diurnal and seasonal evolution
of the ices at the surface of Mars over almost one Martian year. The unique
local time coverage provided by the instrument allows us to observe the
apparition of equatorial CO frost in the second half of the Martian night
around the equinoxes, to its sublimation at sunrise
Structure and Function of Iron-Loaded Synthetic Melanin
We describe a synthetic method for increasing and controlling the iron loading of synthetic melanin nanoparticles and use the resulting materials to perform a systematic quantitative investigation on their structure 12property relationship. A comprehensive analysis by magnetometry, electron paramagnetic resonance, and nuclear magnetic relaxation dispersion reveals the complexities of their magnetic behavior and how these intraparticle magnetic interactions manifest in useful material properties such as their performance as MRI contrast agents. This analysis allows predictions of the optimal iron loading through a quantitative modeling of antiferromagnetic coupling that arises from proximal iron ions. This study provides a detailed understanding of this complex class of synthetic biomaterials and gives insight into interactions and structures prevalent in naturally occurring melanins
Measurement of the Electric and Magnetic Polarizabilities of the Proton
The Compton scattering cross section on the proton has been measured at
laboratory angles of 90 and 135 using tagged photons in the
energy range 70--100 MeV and simultaneously using untagged photons in the range
100--148~MeV. With the aid of dispersion relations, these cross sections were
used to extract the electric and magnetic polarizabilities, and
respectively, of the proton. We find
in agreement with a model-independent dispersion sum rule, and
where the errors shown are statistical, systematic, and model-dependent,
respectively. A comparison with previous experiments is given and global values
for the polarizabilities are extracted.Comment: 35 pages, 11 PostScript figures, uses RevTex 3.
Downregulation of Mcl-1 has anti-inflammatory pro-resolution effects and enhances bacterial clearance from the lung
Phagocytes not only coordinate acute inflammation and host defense at mucosal sites, but also contribute to tissue damage. Respiratory infection causes a globally significant disease burden and frequently progresses to acute respiratory distress syndrome, a devastating inflammatory condition characterized by neutrophil recruitment and accumulation of protein-rich edema fluid causing impaired lung function. We hypothesized that targeting the intracellular protein myeloid cell leukemia 1 (Mcl-1) by a cyclin-dependent kinase inhibitor (AT7519) or a flavone (wogonin) would accelerate neutrophil apoptosis and resolution of established inflammation, but without detriment to bacterial clearance. Mcl-1 loss induced human neutrophil apoptosis, but did not induce macrophage apoptosis nor impair phagocytosis of apoptotic neutrophils. Neutrophil-dominant inflammation was modelled in mice by either endotoxin or bacteria (Escherichia coli). Downregulating inflammatory cell Mcl-1 had anti-inflammatory, pro-resolution effects, shortening the resolution interval (R(i)) from 19 to 7âh and improved organ dysfunction with enhanced alveolarâcapillary barrier integrity. Conversely, attenuating drug-induced Mcl-1 downregulation inhibited neutrophil apoptosis and delayed resolution of endotoxin-mediated lung inflammation. Importantly, manipulating lung inflammatory cell Mcl-1 also accelerated resolution of bacterial infection (R(i); 50 to 16âh) concurrent with enhanced bacterial clearance. Therefore, manipulating inflammatory cell Mcl-1 accelerates inflammation resolution without detriment to host defense against bacteria, and represents a target for treating infection-associated inflammation
The NEOWISE-Discovered Comet Population and the CO+CO_2 production rates
The 163 comets observed during the WISE/NEOWISE prime mission represent the largest infrared survey to date of comets, providing constraints on dust, nucleus size, and CO + CO_2 production. We present detailed analyses of the WISE/NEOWISE comet discoveries, and discuss observations of the active comets showing 4.6 ÎŒm band excess. We find a possible relation between dust and CO + CO_2 production, as well as possible differences in the sizes of long and short period comet nuclei
Nonsystematic Reporting Biases of the SARS-CoV-2 Variant Mu Could Impact Our Understanding of the Epidemiological Dynamics of Emerging Variants
Developing a timely and effective response to emerging SARS-CoV-2 variants of concern (VOCs) is of paramount public health importance. Global health surveillance does not rely on genomic data alone to identify concerning variants when they emerge. Instead, methods that utilize genomic data to estimate the epidemiological dynamics of emerging lineages have the potential to serve as an early warning system. However, these methods assume that genomic data are uniformly reported across circulating lineages. In this study, we analyze differences in reporting delays among SARS-CoV-2 VOCs as a plausible explanation for the timing of the global response to the former VOC Mu. Mu likely emerged in South America in mid-2020, where its circulation was largely confined. In this study, we demonstrate that Mu was designated as a VOC âŒ1 year after it emerged and find that the reporting of genomic data for Mu differed significantly than that of other VOCs within countries, states, and individual laboratories. Our findings suggest that nonsystematic biases in the reporting of genomic data may have delayed the global response to Mu. Until they are resolved, the surveillance gaps that affected the global response to Mu could impede the rapid and accurate assessment of future emerging variants
- âŠ