18 research outputs found

    Whole-genome association analysis of pork meat pH revealed three significant regions and several potential genes in Finnish Yorkshire pigs

    Get PDF
    Background: One of the most commonly used quality measurements of pork is pH measured 24 h after slaughter. The most probable mode of inheritance for this trait is oligogenic with several known major genes, such as PRKAG3. In this study, we used whole-genome SNP genotypes of over 700 AI boars; after a quality check, 42,385 SNPs remained for association analysis. All the boars were purebred Finnish Yorkshire. To account for relatedness of the animals, a pedigree-based relationship matrix was used in a mixed linear model to test the effect of SNPs on pH measured from loin. A bioinformatics analysis was performed to identify the most promising genes in the significant regions related to meat quality. Results: Genome-wide association study (GWAS) revealed three significant chromosomal regions: one on chromosome 3 (39.9 Mb-40.1 Mb) and two on chromosome 15 (58.5 Mb-60.5 Mb and 132 Mb-135 Mb including PRKAG3). A conditional analysis with a significant SNP in the PRKAG3 region, MARC0083357, as a covariate in the model retained the significant SNPs on chromosome 3. Even though linkage disequilibrium was relatively high over a long distance between MARC0083357 and other significant SNPs on chromosome 15, some SNPs retained their significance in the conditional analysis, even in the vicinity of PRKAG3. The significant regions harbored several genes, including two genes involved in cyclic AMP (cAMP) signaling: ADCY9 and CREBBP. Based on functional and transcription factor-gene networks, the most promising candidate genes for meat pH are ADCY9, CREBBP, TRAP1, NRG1, PRKAG3, VIL1, TNS1, and IGFBP5, and the key transcription factors related to these genes are HNF4A, PPARG, and Nkx2-5. Conclusions: Based on SNP association, pathway, and transcription factor analysis, we were able to identify several genes with potential to control muscle cell homeostasis and meat quality. The associated SNPs can be used in selection for better pork. We also showed that post-GWAS analysis reveals important information about the genes' potential role on meat quality. The gained information can be used in later functional studies.Peer reviewe

    Gene networks for total number born in pigs across divergent environments

    No full text
    For reproductive traits such as total number born (TNB), variance due to different environments is highly relevant in animal breeding. In this study, we aimed to perform a gene-network analysis for TNB in pigs across different environments using genomic reaction norm models. Thus, based on relevant single-nucleotide polymorphisms and linkage disequilibrium blocks across environments obtained from GWAS, different sets of candidate genes having biological roles linked to TNB were identified. Network analysis across environment levels resulted in gene interactions consistent with known mammal’s fertility biology, captured relevant transcription factors for TNB biology and pointing out different sets of candidate genes for TNB in different environments. These findings may have important implication for animal production, as optimal breeding may vary depending on later environments. Based on these results, genomic diversity was identified and inferred across environments highlighting differential genetic control in each scenario.</p

    Identification and Functional Annotation of Genes Related to Horses’ Performance: From GWAS to Post-GWAS

    No full text
    Integration of genomic data with gene network analysis can be a relevant strategy for unraveling genetic mechanisms. It can be used to explore shared biological processes between genes, as well as highlighting transcription factors (TFs) related to phenotypes of interest. Unlike other species, gene&ndash;TF network analyses have not yet been well applied to horse traits. We aimed to (1) identify candidate genes associated with horse performance via systematic review, and (2) build biological processes and gene&ndash;TF networks from the identified genes aiming to highlight the most candidate genes for horse performance. Our systematic review considered peer-reviewed articles using 20 combinations of keywords. Nine articles were selected and placed into groups for functional analysis via gene networks. A total of 669 candidate genes were identified. From that, gene networks of biological processes from each group were constructed, highlighting processes associated with horse performance (e.g., regulation of systemic arterial blood pressure by vasopressin and regulation of actin polymerization and depolymerization). Transcription factors associated with candidate genes were also identified. Based on their biological processes and evidence from the literature, we identified the main TFs related to horse performance traits, which allowed us to construct a gene&ndash;TF network highlighting TFs and the most candidate genes for horse performance

    Genome-wide association studies, meta-analyses and derived gene network for meat quality and carcass traits in pigs

    No full text
    A large number of quantitative trait loci (QTL) for meat quality and carcass traits has been reported in pigs over the past 20 years. However, few QTL have been validated and the biological meaning of the genes associated to these QTL has been underexploited. In this context, a meta-analysis was performed to compare the significant markers with meta-QTL previously reported in literature. Genome association studies were performed for 12 traits, from which 144 SNPs were found out to be significant (P < 0.05). They were validated in the meta-analysis and used to build the Association Weight Matrix, a matrix framework employed to investigate co-association of pairwise SNP across phenotypes enabling to derive a gene network. A total of 45 genes were selected from the Association Weight Matrix analysis, from which 25 significant transcription factors were identified and used to construct the networks associated to meat quality and carcass traits. These networks allowed the identification of key transcription factors, such as SOX5 and NKX2-5, gene-gene interactions (e.g. ATP5A1, JPH1, DPT and NEDD4) and pathways related to the regulation of adipose tissue metabolism and skeletal muscle development. Validated SNPs and knowledge of key genes driving these important industry traits might assist future strategies in pig breeding

    Morphological and molecular differences in corpus luteum of pregnant sows from divergent genetic groups

    No full text
    Comprehending mechanisms controlling corpus luteum (CL) angiogenesis and apoptosis in pregnant sows is essential to understand the physiological role of these processes in CL function, progesterone production and consequently in conceptus development and prenatal mortality. CL from 54 sows from two genetic groups, a commercial line (COM) and the local Piau breed (LPB), were obtained for gene expression (n = 3 COM; n = 6 LPB), histological and protein analysis (n = 3 COM; n = 3 LPB), divided in six gestational ages (seven, 15, 30, 45, 60 and 90 days). We observed differences between gestational ages in CL morphology, in which the average number of blood vessels/capillaries at 90-days was greater than at the seventh day by Tukey test. RT-qPCR analysis revealed that apoptotic genes (BAX, BCL2 and CASP3) were differentially expressed between genetic groups and gestational ages in each group. Angiogenesis genes also presented differences between genetic groups (ANGPT1) and gestational ages (MMP9, VEGFA and ANGPT1). No differences in protein abundance of steroidogenic enzymes (CYP11A1 and HSD3B1) were observed. Our findings indicate that despite the differences in gene expression, differences in corpus luteum vascularization were observed only across gestational ages, with no dissimilarities between genetic groups

    The optimal number of partial least squares components in genomic selection for pork pH

    No full text
    ABSTRACT: The main application of genomic selection (GS) is the early identification of genetically superior animals for traits difficult-to-measure or lately evaluated, such as meat pH (measured after slaughter). Because the number of markers in GS is generally larger than the number of genotyped animals and these markers are highly correlated owing to linkage disequilibrium, statistical methods based on dimensionality reduction have been proposed. Among them, the partial least squares (PLS) technique stands out, because of its simplicity and high predictive accuracy. However, choosing the optimal number of components remains a relevant issue for PLS applications. Thus, we applied PLS (and principal component and traditional multiple regression) techniques to GS for pork pH traits (with pH measured at 45min and 24h after slaughter) and also identified the optimal number of PLS components based on the degree-of-freedom (DoF) and cross-validation (CV) methods. The PLS method out performs the principal component and traditional multiple regression techniques, enabling satisfactory predictions for pork pH traits using only genotypic data (low-density SNP panel). Furthermore, the SNP marker estimates from PLS revealed a relevant region on chromosome 4, which may affect these traits. The DoF and CV methods showed similar results for determining the optimal number of components in PLS analysis; thus, from the statistical viewpoint, the DoF method should be preferred because of its theoretical background (based on the "statistical information theory"), whereas CV is an empirical method based on computational effort

    Genome-wide association studies for heat stress response in Bos taurus × Bos indicus crossbred cattle

    No full text
    Heat stress is an important issue in the global dairy industry. In tropical areas, an alternative to overcome heat stress is the use of crossbred animals or synthetic breeds, such as the Girolando. In this study, we performed a genome-wide association study (GWAS) and post-GWAS analyses for heat stress in an experimental Gir × Holstein F2 population. Rectal temperature (RT) was measured in heat-stressed F2 animals, and the variation between 2 consecutive RT measurements (ΔRT) was used as the dependent variable. Illumina BovineSNP50v1 BeadChip (Illumina Inc., San Diego, CA) and single-SNP approach were used for GWAS. Post-GWAS analyses were performed by gene ontology terms enrichment and gene-transcription factor (TF) networks, generated from enriched TF. The breed origin of marker alleles in the F2 population was assigned using the breed of origin of alleles (BOA) approach. Heritability and repeatability estimates (± standard error) for ΔRT were 0.13 ± 0.08 and 0.29 ± 0.06, respectively. Association analysis revealed 6 SNP significantly associated with ΔRT. Genes involved with biological processes in response to heat stress effects (LIF, OSM, TXNRD2, and DGCR8) were identified as putative candidate genes. After performing the BOA approach, the 10% of F2 animals with the lowest breeding values for ΔRT were classified as low-ΔRT, and the 10% with the highest breeding values for ΔRT were classified as high-ΔRT. On average, 49.4% of low-ΔRT animals had 2 alleles from the Holstein breed (HH), and 39% had both alleles from the Gir breed (GG). In high-ΔRT animals, the average proportion of animals for HH and GG were 1.4 and 50.2%, respectively. This study allowed the identification of candidate genes for ΔRT in Gir × Holstein crossbred animals. According to the BOA approach, Holstein breed alleles could be associated with better response to heat stress effects, which could be explained by the fact that Holstein animals are more affected by heat stress than Gir animals and thus require a genetic architecture to defend the body from the deleterious effects of heat stress. Future studies can provide further knowledge to uncover the genetic architecture underlying heat stress in crossbred cattle
    corecore