21,865 research outputs found

    Sets and indices in linear programming modelling and their integration with relational data models

    Get PDF
    LP models are usually constructed using index sets and data tables which are closely related to the attributes and relations of relational database (RDB) systems. We extend the syntax of MPL, an existing LP modelling language, in order to connect it to a given RDB system. This approach reuses existing modelling and database software, provides a rich modelling environment and achieves model and data independence. This integrated software enables Mathematical Programming to be widely used as a decision support tool by unlocking the data residing in corporate databases

    Consistent Gravitationally-Coupled Spin-2 Field Theory

    Full text link
    Inspired by the translational gauge structure of teleparallel gravity, the theory for a fundamental massless spin-2 field is constructed. Accordingly, instead of being represented by a symmetric second-rank tensor, the fundamental spin-2 field is assumed to be represented by a spacetime (world) vector field assuming values in the Lie algebra of the translation group. The flat-space theory naturally emerges in the Fierz formalism and is found to be equivalent to the usual metric-based theory. However, the gravitationally coupled theory, with gravitation itself described by teleparallel gravity, is shown not to present the consistency problems of the spin-2 theory constructed on the basis of general relativity.Comment: 16 pages, no figures. V2: Presentation changes, including addition of a new sub-section, aiming at clarifying the text; version accepted for publication in Class. Quantum Grav

    When Politicians Talk About Politics: Identifying Political Tweets of Brazilian Congressmen

    Full text link
    Since June 2013, when Brazil faced the largest and most significant mass protests in a generation, a political crisis is in course. In midst of this crisis, Brazilian politicians use social media to communicate with the electorate in order to retain or to grow their political capital. The problem is that many controversial topics are in course and deputies may prefer to avoid such themes in their messages. To characterize this behavior, we propose a method to accurately identify political and non-political tweets independently of the deputy who posted it and of the time it was posted. Moreover, we collected tweets of all congressmen who were active on Twitter and worked in the Brazilian parliament from October 2013 to October 2017. To evaluate our method, we used word clouds and a topic model to identify the main political and non-political latent topics in parliamentarian tweets. Both results indicate that our proposal is able to accurately distinguish political from non-political tweets. Moreover, our analyses revealed a striking fact: more than half of the messages posted by Brazilian deputies are non-political.Comment: 4 pages, 7 figures, 2 table

    A framework for the construction of generative models for mesoscale structure in multilayer networks

    Get PDF
    Multilayer networks allow one to represent diverse and coupled connectivity patterns—such as time-dependence, multiple subsystems, or both—that arise in many applications and which are difficult or awkward to incorporate into standard network representations. In the study of multilayer networks, it is important to investigate mesoscale (i.e., intermediate-scale) structures, such as dense sets of nodes known as communities, to discover network features that are not apparent at the microscale or the macroscale. The ill-defined nature of mesoscale structure and its ubiquity in empirical networks make it crucial to develop generative models that can produce the features that one encounters in empirical networks. Key purposes of such models include generating synthetic networks with empirical properties of interest, benchmarking mesoscale-detection methods and algorithms, and inferring structure in empirical multilayer networks. In this paper, we introduce a framework for the construction of generative models for mesoscale structures in multilayer networks. Our framework provides a standardized set of generative models, together with an associated set of principles from which they are derived, for studies of mesoscale structures in multilayer networks. It unifies and generalizes many existing models for mesoscale structures in fully ordered (e.g., temporal) and unordered (e.g., multiplex) multilayer networks. One can also use it to construct generative models for mesoscale structures in partially ordered multilayer networks (e.g., networks that are both temporal and multiplex). Our framework has the ability to produce many features of empirical multilayer networks, and it explicitly incorporates a user-specified dependency structure between layers. We discuss the parameters and properties of our framework, and we illustrate examples of its use with benchmark models for community-detection methods and algorithms in multilayer networks

    Comparison of Test and Finite Element Analysis for Two Full-Scale Helicopter Crash Tests

    Get PDF
    Finite element analyses have been performed for two full-scale crash tests of an MD-500 helicopter. The first crash test was conducted to evaluate the performance of a composite deployable energy absorber under combined flight loads. In the second crash test, the energy absorber was removed to establish the baseline loads. The use of an energy absorbing device reduced the impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to analytical results. Details of the full-scale crash tests and development of the system-integrated finite element model are briefly described along with direct comparisons of acceleration magnitudes and durations for the first full-scale crash test. Because load levels were significantly different between tests, models developed for the purposes of predicting the overall system response with external energy absorbers were not adequate under more severe conditions seen in the second crash test. Relative error comparisons were inadequate to guide model calibration. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used for the second full-scale crash test. The calibrated parameter set reduced 2-norm prediction error by 51% but did not improve impact shape orthogonality

    Towards Engineering and Understanding of Guest Host Interaction Between Dopants and Liquid Crystals in Liquid Crystal Displays

    Get PDF
    Liquid crystal displays are intricate devices which consist of many cells that are filled with liquid crystal hosts. The operation of the liquid crystal cell is to modulate the polarisation of light, by varying their birefringence, which in turn can be used to control the intensity of light and colour as a function of time. Many individual cells grouped together can be controlled to give specific intensity of light and colour, to build up images that are viewed on displays, i.e. pictures on TV’s. The properties of the liquid crystalline material used in a cell dictate the performance of the device which they are used. Commercially used liquid crystal material is typically a multi-component system that exhibits many physical properties such as birefringence, dielectric anisotropy, voltage holding ratio, visco-elastic, guest-host effect and the kinetic switching response time of the cell between the on state and off state. By manipulating the physical properties we can exert specific control over the properties of the cell of particular importance in display applications is the speed with which cells can be turned between the on and off state; these are known as the rise and decay response times respectively. Introducing guest molecules into the liquid crystal host may alter the dielectric anisotropy which potentially increases the speed of the switching process, making the device faster. Guest molecules must be compatible with the dielectrically positive or negative liquid crystal host allowing good mixing of the components and alignment between the guest molecule and liquid crystal molecule. This compatibility is important as it allows both, guest and host, to align with the applied electric field when turned on giving the on state of the cell and when turned off allowing both to re-align with the alignment layer in the cell bringing to the cell order of the medium back to the off state of the cell. The time taken for the cell to reach the on state and off state is an important part of this study. Dopants have been designed with a head, tail and linker core moiety that are compatible with dielectrically positive and negative liquid crystals. Head groups will have polar substituents such as heteroarenes, fluorine and bromine, to exert control over the dielectric anisotropy. Alkoxy or alkyl tails were selected to increase solubility and size compatibility with the liquid crystal hosts. The linkers between the two arenes were selected as acetylene (linear, large Raman cross-section) and ether, methylene and propylene (to bring about a bend in the molecule). The switching times for liquid crystal devices are studied using an electro-optic method developed in conjunction with SONY MSL (Stuttgart). These studies enable analysis of the transmission of light through the cell as it goes from the on/off state as a function of time and applied potential. By comparison with the currently used liquid crystal materials our work shows that the level of doping, the length of the tail and the nature of the linker do affect the switching time significantly. It is shown that a non-linear linker, which introduces a ‘bite angle’ within the guest molecule brings about the best increase in response times. Time-Resolved Raman spectroscopy studies of a liquid crystal cell during the turn on/off process were made. These demonstrate the capability of this technique to measure the orientation of the molecules as a function of time as well allowing the independent motion of the guest and host molecules during the switching process. Raman spectroscopy gives a useful insight into the behaviour of the guest and host materials in an operating liquid crystal cell

    A simple interpretation of quantum mirages

    Full text link
    In an interesting new experiment the electronic structure of a magnetic atom adsorbed on the surface of Cu(111), observed by STM, was projected into a remote location on the same surface. The purpose of the present paper is to interpret this experiment with a model Hamiltonian, using ellipses of the size of the experimental ones, containing about 2300 atoms. The charge distribution for the different wavefunctions is analyzed, in particular, for those with energy close to the Fermi energy of copper Ef. Some of them show two symmetric maxima located on the principal axis of the ellipse but not necessarily at the foci. If a Co atom is adsorbed at the site where the wavefunction with energy EFE_F has a maximum and the interaction is small, the main effect of the adsorbed atom will be to split this particular wavefunction in two. The total charge density will remain the same but the local density of states will present a dip at Ef at any site where the charge density is large enough. We relate the presence of this dip to the observation of quantum mirages. Our interpretation suggests that other sites, apart from the foci of the ellipses, can be used for projecting atomic images and also indicates the conditions for other non magnetic adsorbates to produce mirages.Comment: 3 pages, 3 Fig
    • …
    corecore