53 research outputs found

    Planting Systems for Modern Olive Growing: Strengths and Weaknesses

    Get PDF
    The objective of fully mechanizing olive harvesting has been pursued since the 1970s to cope with labor shortages and increasing production costs. Only in the last twenty years, after adopting super-intensive planting systems and developing appropriate straddle machines, a solution seems to have been found. The spread of super-intensive plantings, however, raises serious environmental and social concerns, mainly because of the small number of cultivars that are currently used (basically 2), compared to over 100 cultivars today cultivated on a large scale across the world. Olive growing, indeed, insists on over 11 million hectares. Despite its being located mostly in the Mediterranean countries, the numerous olive growing districts are characterized by deep differences in climate and soil and in the frequency and nature of environmental stress. To date, the olive has coped with biotic and abiotic stress thanks to the great cultivar diversity. Pending that new technologies supporting plant breeding will provide a wider number of cultivars suitable for super-intensive systems, in the short term, new growing models must be developed. New olive orchards will need to exploit cultivars currently present in various olive-growing areas and favor increasing productions that are environmentally, socially, and economically sustainable. As in fruit growing, we should focus on “pedestrian olive orchards”, based on trees with small canopies and whose top can be easily reached by people from the ground and by machines (from the side of the top) that can carry out, in a targeted way, pesticide treatments, pruning and harvesting

    Is new olive farming sustainable? A spatial comparison of productive and environmental performances between traditional and new olive orchards with the model OliveCan

    Get PDF
    Olive (Olea europaea L.) is a widely spread tree species in the Mediterranean. In the last decades, olive farming has known major management changes with high economic and environmental impacts. The fast track expansion of this modern olive farming in these recent years casts doubts on the sustainability of such important tree plantation across the Mediterranean. In this work, we performed a spatial modelling analysis to investigate the implications of climate variability and farming management on the productivity and environmental performances of olive orchards around the Mediterranean. Implementation of this research is based on the use of OliveCan; a process-based model able to illustrate responses of water and carbon balances to weather variables, soil characteristics and management techniques enabling the comprehension of olive orchard dynamics under heterogeneous conditions of climate and agricultural practices. Four main intensification levels were adopted to reflect the main olive grove types from traditional to new intensive plantations: low density LD (100 trees ha−1), medium density MD (200 trees ha−1), high density HD (400 trees ha−1) and super high density SHD (1650 trees ha−1). Managements tested were intensification, water supply (rainfed, deficit and full irrigated) and the fate of pruning residues (exported or left on the soil). Two cases studies in two of the main Mediterranean olive-growing regions with contrasting environmental conditions, Tuscany and Jaen regions, focused on mitigation alternative managements for carbon sequestration. Results showed that olive orchards responses in terms of yield and Net Ecosystem Productivity (NEP) vary along with climatic conditions. Water supply was the main driver with a production function that varies for different atmospheric demands. Application of deficit irrigation proved to boost water use efficiency. Besides, intensification from LD to SHD, presented the greatest improvements, 28–73% for yield and 50–100% for NEP. The C sequestration potential of olive orchards was confirmed. In fact, soil organic carbon (SOC) increased continuously over 400 years of simulation, reaching a state of equilibrium. Moreover, intensification and irrigation improved total carbon sequestration. Management of incorporating pruning residues in the soil increased SOC of 10.5 t C ha−1 for Tuscany and 10.8 t C ha−1 for Jaen. Findings of this research enabled the identification of the main drivers influencing the productive and environmental performance of olive groves in the different Mediterranean sub-climates. Impacts of management innovations on olive farming sustainability were also quantified which may help improve production systems for a more sustainable olive cultivation

    The Influence of Light on Olive (Olea europaea L.) Fruit Development Is Cultivar Dependent

    Get PDF
    In olive, the response to environmental conditions, such as light availability, is under genetic control and requires a combination of biochemical and physiological events. We investigated the effect of irradiance in fruit development in two Italian cultivars, Leccino and Frantoio. Morphological and cyto-histological analyses, as well as water and oil content determination, were carried out in fruits exposed to a different light regime (named as light and shade fruits). Results demonstrated that the influence of light availability on fruit development depends on the cultivar. In Leccino, the fresh and the dry weight, the percentage of dry matter, the kernel and fruit diameter, the mesocarp thickness and the mesocarp cell size were higher in the light exposed fruits than in the ones grown in the shade. In Frantoio, differences between light and shade fruits were observed only at 140 DAF (Days After Flowering) and only in the kernel and fruit diameter and in the dry and fresh weight, which were higher in the light exposed fruits. Leccino, therefore, showed a greater sensitivity to the light availability. This may be related to the observed delay in the endocarp lignification as compared to the Frantoio cultivar. In each cultivar, moreover, shade and light fruits did not show differences in the timing of cell differentiation. Finally, the investigation of oil storage carried out in cyto-histological studies demonstrated that differences in oil content between fruit subjected to different light regimes correlated with the number of oil containing cells, rather than the oil content per cell. A different behaviour was observed in the two cultivars: in Leccino, the mesocarp cell size was almost twice of Frantoio, while oil drops were only 30% larger; therefore, the percentage of cell volume occupied by the oil drops was lower in Leccino than in Frantoio. The chemical analysis confirmed this observation

    Green and simple extraction of free seleno-amino acids from powdered and lyophilized milk samples with natural deep eutectic solvents

    Get PDF
    Natural deep eutectic solvents (NADES) were introduced for the extraction of free seleno-amino acids from lyophilized and powdered milk samples. Different NADES were evaluated, and lactic acid:glucose (LGH) showed the highest selenium recoveries. Selenium analysis was performed by inductively coupled plasma mass spectrometry (ICP MS). Se-NADES analysis in ICP MS was optimized according to the radio frequency power and nebulization gas flow rate. Se-NADES extraction was optimized by an experimental design. LGH dilution, LGH volume, sample quantity, and ultrasound time were factors influencing the extraction. Seleno-amino acids were determined by liquid chromatography-ICP MS. After optimization, the limits of detection obtained were 7.37, 8.63, and 9.64 ”g kg−1 for selenocysteine, selenomethionine, and seleno-methyl-selenocysteine, respectively. The NADES-extraction is a green procedure with 2 penalty points in the EcoScale. The method was applied to the analysis of powdered milk, lyophilized Se-fortified sheep milk, and ERM-BD151 skimmed milk powder.Fil: LĂłpez, Romina Vanesa. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Luis. Instituto de QuĂ­mica de San Luis. Universidad Nacional de San Luis. Facultad de QuĂ­mica, BioquĂ­mica y Farmacia. Instituto de QuĂ­mica de San Luis; Argentina. Universidad Nacional de San Luis. Facultad de QuĂ­mica, BioquĂ­mica y Farmacia. Departamento de QuĂ­mica. Área de QuĂ­mica AnalĂ­tica; ArgentinaFil: D'Amato, Roberto. UniversitĂ  di Perugia; ItaliaFil: Trabalza Marinucci, Massimo. UniversitĂ  di Perugia; ItaliaFil: Regni, Luca. UniversitĂ  di Perugia; ItaliaFil: Proietti, Primo. UniversitĂ  di Perugia; ItaliaFil: Maratta MartĂ­nez, Sergio Ariel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Juan; Argentina. Universidad Nacional de San Juan. Facultad de IngenierĂ­a. Instituto de Investigaciones Mineras; ArgentinaFil: Cerutti, Estela Soledad. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Luis. Instituto de QuĂ­mica de San Luis. Universidad Nacional de San Luis. Facultad de QuĂ­mica, BioquĂ­mica y Farmacia. Instituto de QuĂ­mica de San Luis; ArgentinaFil: Pacheco, Pablo Hugo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Luis. Instituto de QuĂ­mica de San Luis. Universidad Nacional de San Luis. Facultad de QuĂ­mica, BioquĂ­mica y Farmacia. Instituto de QuĂ­mica de San Luis; Argentin

    Current Knowledge on Selenium Biofortification to Improve the Nutraceutical Profile of Food: A Comprehensive Review

    Get PDF
    Selenium (Se) is an important micronutrient for living organisms, since it is involved in several physiological and metabolic processes. Se intake in humans is often low and very seldom excessive, and its bioavailability depends also on its chemical form, with organic Se as the most available after ingestion. The main dietary source of Se for humans is represented by plants, since many species are able to metabolize and accumulate organic Se in edible parts to be consumed directly (leaves, flowers, fruits, seeds, and sprouts) or after processing (oil, wine, etc.). Countless studies have recently investigated the Se biofortification of plants to produce Se-enriched foods and elicit the production of secondary metabolites, which may benefit human health when incorporated into the diet. Moreover, feeding animals Se-rich diets may provide Se-enriched meat. This work reviews the most recent literature on the nutraceutical profile of Se-enriched foods from plant and animal sources.Fil: D'Amato, Roberto. UniversitĂ  di Perugia; ItaliaFil: Regni, Luca. UniversitĂ  di Perugia; ItaliaFil: Falcinelli, Beatrice. UniversitĂ  di Perugia; ItaliaFil: Mattioli, Simona. UniversitĂ  di Perugia; ItaliaFil: Benincasa, Paolo. UniversitĂ  di Perugia; ItaliaFil: Dal Bosco, Alessandro. UniversitĂ  di Perugia; ItaliaFil: Pacheco, Pablo Hugo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - San Luis. Instituto de QuĂ­mica de San Luis. Universidad Nacional de San Luis. Facultad de QuĂ­mica, BioquĂ­mica y Farmacia. Instituto de QuĂ­mica de San Luis; ArgentinaFil: Proietti, Primo. UniversitĂ  di Perugia; ItaliaFil: Troni, Elisabetta. UniversitĂ  di Perugia; ItaliaFil: Santi, Claudio. UniversitĂ  di Perugia; ItaliaFil: Businelli, Daniela. UniversitĂ  di Perugia; Itali

    Physiological, epigenetic and genetic regulation in some olive cultivars under salt stress

    Get PDF
    Abstract Cultivated olive, a typical fruit crop species of the semi-arid regions, could successfully face the new scenarios driven by the climate change through the selection of tolerant varieties to salt and drought stresses. In the present work, multidisciplinary approaches, including physiological, epigenetic and genetic studies, have been applied to clarify the salt tolerance mechanisms in olive. Four varieties (Koroneiki, Royal de Cazorla, Arbequina and Picual) and a related form (O. europaea subsp. cuspidata) were grown in a hydroponic system under different salt concentrations from zero to 200 mM. In order to verify the plant response under salt stress, photosynthesis, gas exchange and relative water content were measured at different time points, whereas chlorophyll and leaf concentration of Na+, K+ and Ca2+ ions, were quantified at 43 and 60 days after treatment, when stress symptoms became prominent. Methylation sensitive amplification polymorphism (MSAP) technique was used to assess the effects of salt stress on plant DNA methylation. Several fragments resulted differentially methylated among genotypes, treatments and time points. Real time quantitative PCR (RT-qPCR) analysis revealed significant expression changes related to plant response to salinity. Four genes (OePIP1.1, OePetD, OePI4Kg4 and OeXyla) were identified, as well as multiple retrotransposon elements usually targeted by methylation under stress conditions

    Effects of Nitrogen Foliar Fertilization on the Vegetative and Productive Performance of the Olive Tree and on Oil Quality

    No full text
    The correct management (dose, time of distribution) of N fertilization in olive growing is still not completely clarified but is nowadays essential in order to guarantee sustainable production. In this regard, in central Italy over a 4-year-period a study was carried out to investigate the effect of high nitrogen availability during oil accumulation in the fruit (second phase of fruit growth) on vegetative and productive activities of olive trees and oil quality. In May of each year, secondary branches were selected and girdled in their proximal part. Afterwards, half of the girdled branches were sprayed three times with a solution containing urea (2% w/w), whereas the other half was sprayed only with water. The nitrogen treatments did not cause any damage to the foliage and fruits nor did it cause appreciable changes in leaf photosynthesis and specific weight, fruit-drop, ripening pattern and weight, water and oil contents, pulp/pit ratio of the fruits, fatty acid composition, polyphenols content, and sensorial characteristics of the oil. The N provided via foliar fertilization during the oil accumulation phase in trees in conditions of good supply of N does not induce significant effects on the vegetative-productive activity of the tree

    Abiotic Stresses, Biostimulants and Plant Activity

    No full text
    Contemporary agriculture is characterized by a highly intensive nature and productivity [...

    Encapsulation in Calcium Alginate of Nodes from Stolons of <i>Mentha spicata</i> L.

    No full text
    It is well known that the products of encapsulation (multifunctional beads and synthetic seeds) can be used as innovative technological tools to integrate micropropagation both for plant germplasm conservation and to simplify the management of propagation materials in nurseries. Nevertheless, the usual concept of encapsulation concerns the use of initial in vitro derived explants. In this study, for the first time, in vivo derived organs of Mentha spicata L., obtained through the excision of fragments (nodes) from stolons of cultivated mother plants, were employed. The artificial endosperm had a tenfold reduced concentration of Murashige and Skoog (MS) substrate, with the addition of sucrose (5 g L−1), 6-benzyl-aminopurine (BAP) (0.1 mg L−1) and 1-naphthalene acetic acid (NAA) (0.01 mg L−1). Moreover, the calcium alginate matrix was enriched with different thiophanate-methyl (TM) concentrations (0, 10, 50, 100 and 200 mg L−1) in order to prevent possible contamination during the conversion in nonsterile conditions. Interesting results were obtained encapsulating every single node of fresh stolon as a bipolar propagule able to develop a whole plantlet (conversion), as the coated seed in other species. The synthetic seeds of spearmint without TM in the artificial endosperm showed a satisfactory ability to convert (56.7%) into plantlets after sowing in soil under nonsterile conditions. TM at 100 and 200 mg L−1 negatively affected the total emergence, which decreased to 30.0 and 33.3%, respectively. In general, in the artificial seeds without TM, higher values for most of the aboveground and belowground plants parameters were recorded compared to naked nodes

    Sustainability of olive growing in the Mediterranean area under future climate scenarios: Exploring the effects of intensification and deficit irrigation

    No full text
    Embargado hasta 30/09/2023Olive orchards represent a key agricultural system with high economic and environmental prominence. Expected future climate tendencies over the Mediterranean could threaten the sustainability of such strategic tree crop. This study evaluates the productive and environmental performance of olive orchards under different climate change scenarios and management strategies across the main olive-farming regions over southern Europe using the process-based model OliveCan. Simulations were performed for low density LD (100 trees ha−1), high density HD (400 trees ha−1) and super high density SHD (1650 trees ha−1) olive orchards over baseline period (1980-2010) and future scenarios (2041–2070 and 2071–2100 for RCP4.5 and RCP8.5). Results showed that the future increase in CO2 concentration may compensate the negative effects of higher evaporative demand and diminished water supply resulting in an enhancement of water use efficiency and carbon capture potential in olive orchards. Irrigation requirement for the maximum productivity are expected to increase by 5−27%. Moreover, rainfed low density orchards will be the most vulnerable to expected climate changes, in particular in the driest areas. In fact, a decrease in yield up to 28 % with an increase in its interannual variability of 20 % is expected over the Iberian Peninsula while yield increased up to 26 % over the centre of the Mediterranean. Deficit irrigation and intensification will improve olive orchard productivity and carbon sequestration capacity. Besides, the decrease in winter chilling is not expected to be enough to produce significant flowering anomalies or failures over the study area. Even though findings of this research showed that olive orchards may benefit from future conditions, assessment of management alternatives at local scale will be a must for a better adaptability of olive orchards
    • 

    corecore