6,252 research outputs found

    Non-equilibrium thermodynamics. IV: Generalization of Maxwell, Claussius-Clapeyron and Response Functions Relations, and the Prigogine-Defay Ratio for Systems in Internal Equilibrium

    Full text link
    We follow the consequences of internal equilibrium in non-equilibrium systems that has been introduced recently [Phys. Rev. E 81, 051130 (2010)] to obtain the generalization of Maxwell's relation and the Clausius-Clapeyron relation that are normally given for equilibrium systems. The use of Jacobians allow for a more compact way to address the generalized Maxwell relations; the latter are available for any number of internal variables. The Clausius-Clapeyron relation in the subspace of observables show not only the non-equilibrium modification but also the modification due to internal variables that play a dominant role in glasses. Real systems do not directly turn into glasses (GL) that are frozen structures from the supercooled liquid state L; there is an intermediate state (gL) where the internal variables are not frozen. Thus, there is no single glass transition. A system possess several kinds of glass transitions, some conventional (L \rightarrow gL; gL\rightarrow GL) in which the state change continuously and the transition mimics a continuous or second order transition, and some apparent (L\rightarrow gL; L\rightarrow GL) in which the free energies are discontinuous so that the transition appears as a zeroth order transition, as discussed in the text. We evaluate the Prigogine-Defay ratio {\Pi} in the subspace of the observables at these transitions. We find that it is normally different from 1, except at the conventional transition L\rightarrow gL, where {\Pi}=1 regardless of the number of internal variables.Comment: 42 pages, 3 figures, citations correcte

    The Transcriptional Landscape of Marek’s Disease Virus in Primary Chicken B Cells Reveals Novel Splice Variants and Genes

    Get PDF
    Marek’s disease virus (MDV) is an oncogenic alphaherpesvirus that infects chickens and poses a serious threat to poultry health. In infected animals, MDV efficiently replicates in B cells in various lymphoid organs. Despite many years of research, the viral transcriptome in primary target cells of MDV remained unknown. In this study, we uncovered the transcriptional landscape of the very virulent RB1B strain and the attenuated CVI988/Rispens vaccine strain in primary chicken B cells using high-throughput RNA-sequencing. Our data confirmed the expression of known genes, but also identified a novel spliced MDV gene in the unique short region of the genome. Furthermore, de novo transcriptome assembly revealed extensive splicing of viral genes resulting in coding and non-coding RNA transcripts. A novel splicing isoform of MDV UL15 could also be confirmed by mass spectrometry and RT-PCR. In addition, we could demonstrate that the associated transcriptional motifs are highly conserved and closely resembled those of the host transcriptional machinery. Taken together, our data allow a comprehensive re-annotation of the MDV genome with novel genes and splice variants that could be targeted in further research on MDV replication and tumorigenesis

    Phase resolved spectroscopy of the Vela pulsar with XMM-Newton

    Full text link
    The ~10^4 y old Vela Pulsar represents the bridge between the young Crab-like and the middle-aged rotation powered pulsars. Its multiwavelength behaviour is due to the superposition of different spectral components. We take advantage of the unprecedented harvest of photons collected by XMM-Newton to assess the Vela Pulsar spectral shape and to study the pulsar spectrum as a function of its rotational phase. As for the middle-aged pulsars Geminga, PSR B0656+14 and PSR B1055-52 (the "Three Musketeers"), the phase-integrated spectrum of Vela is well described by a three-component model, consisting of two blackbodies (T_bb1=(1.06+/-0.03)x10^6 K, R_bb1=5.1+/-0.3 km, T_bb2=(2.16+/-0.06)x10^6 K, R_bb2=0.73+/-0.08 km) plus a power-law (gamma=2.2+/-0.3). The relative contributions of the three components are seen to vary as a function of the pulsar rotational phase. The two blackbodies have a shallow 7-9% modulation. The cooler blackbody, possibly related to the bulk of the neutron star surface, has a complex modulation, with two peaks per period, separated by ~0.35 in phase, the radio pulse occurring exactly in between. The hotter blackbody, possibly originating from a hot polar region, has a nearly sinusoidal modulation, with a single, broad maximum aligned with the second peak of the cooler blackbody, trailing the radio pulse by ~0.15 in phase. The non thermal component, magnetospheric in origin, is present only during 20% of the pulsar phase and appears to be opposite to the radio pulse. XMM-Newton phase-resolved spectroscopy unveils the link between the thermally emitting surface of the neutron star and its charge-filled magnetosphere, probing emission geometry as a function of the pulsar rotation. This is a fundamental piece of information for future 3-dimensional modeling of the pulsar magnetosphere.Comment: 27 pages, 9 figures. Accepted for publication in Ap

    Ergodicity breaking in a model showing many-body localization

    Full text link
    We study the breaking of ergodicity measured in terms of return probability in the evolution of a quantum state of a spin chain. In the non ergodic phase a quantum state evolves in a much smaller fraction of the Hilbert space than would be allowed by the conservation of extensive observables. By the anomalous scaling of the participation ratios with system size we are led to consider the distribution of the wave function coefficients, a standard observable in modern studies of Anderson localization. We finally present a criterion for the identification of the ergodicity breaking (many-body localization) transition based on these distributions which is quite robust and well suited for numerical investigations of a broad class of problems.Comment: 5 pages, 5 figures, final versio

    Toward validation of simulated accelerograms via prediction equations for nonlinear SDOF response

    Get PDF
    Seismic structural risk analysis of critical facilities may require nonlinear dynamic analysis for which record selection is one of the key issues. Notwithstanding the increasing availability of database of strong-motion records, it may be hard to find accelerograms that fit a specific scenario (e.g., in terms of magnitude and distance) resulting from hazard assessment at the site of interest. A possible, alternative, approach can be the use of artificial and/or simulated ground motion in lieu of real records. Their employment requires systematic engineering validation in terms of structural response and/or seismic risk. Prediction equations for peak and cyclic inelastic single degree of freedom systems’ response, based on Italian accelerometric data, are discussed in this study as a possible benchmark, alongside real record counterparts, for the validation of synthetic records. Even if multiple events would be in principle required, an extremely preliminary validation is carried out considering only four simulated records of the 1980 Irpinia (southern Italy) M w 6.9 earthquake. Simulated records are obtained through a broadband hybrid integral-composite technique. Results show how this simulation method may lead to generally acceptable results. It is also emphasized how this kind of validation may provide additional results with respect to classical signal-to-signal comparison of real and simulated records

    The 2003 eclipse of EE Cep is coming. A review of past eclipses

    Full text link
    EE Cep is an eclipsing binary with a period of 5.6 years. The next eclipse will occur soon, in May-June 2003, and all available past eclipses were collected and briefly analysed. EE Cep shows very large changes of the shape and the depth of minima during different eclipses, however it is possible to single out some persistent features. The analysis suggests that the eclipsing body should be a long object surrounded by an extended semi-transparent envelope. As an explanation, a model of a precessing optically thick disc, inclined to the plane of the binary orbit, is invoked. The changes of its spatial orientation, which is defined by the inclination of the disc and the tilt, induced most probably by precession of the disc spin axis with a period of about 50 years, produce strange photometric behaviour of this star. The H_alpha emission, and possibly the NaI absorptions, show significant changes during several months outside of the eclipse phase.Comment: 7 pages, 7 figures, LaTeX2e, accepted by A&

    Nb-doped TiO2 thin films deposited by spray pyrolysis method

    Get PDF
    Undoped TiO2 and Nb-doped TiO2 thin films have been deposited by spray pyrolysis method on ITO/glass substrates. All the as-deposited films are amorphous, as shown by X-Ray Diffraction. Under certain conditions of heat-treatment in air, the films deposited by pyrolysis became pure anatase. The hydrophilic properties of all the films were investigated, and a comparison was made as a function of the heat treatment, and as a function of Nb doping. Contact angles lower then 3 deg. have been obtained, after irradiation times specific for each film

    Perfectly Translating Lattices on a Cylinder

    Full text link
    We perform molecular dynamics simulations on an interacting electron gas confined to a cylindrical surface and subject to a radial magnetic field and the field of the positive background. In order to study the system at lowest energy states that still carry a current, initial configurations are obtained by a special quenching procedure. We observe the formation of a steady state in which the entire electron-lattice cycles with a common uniform velocity. Certain runs show an intermediate instability leading to lattice rearrangements. A Hall resistance can be defined and depends linearly on the magnetic field with an anomalous coefficient reflecting the manybody contributions peculiar to two dimensions.Comment: 13 pages, 5 figure
    • …
    corecore