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ABSTRACT 

Seismic structural risk analysis of critical facilities may require nonlinear dynamic analysis for which 

record selection is one of the key issues. Notwithstanding the increasing availability of database of 

strong-motion records, it may be hard to find accelerograms that fit a specific scenario (e.g., in terms of 

magnitude and distance) resulting from hazard assessment at the site of interest. A possible, alternative, 

approach can be the use of artificial and/or simulated ground motion in lieu of real records. Their 

employment requires systematic engineering validation in terms of structural response and/or seismic 

risk. Prediction equations for peak and cyclic inelastic single degree of freedom systems’ response, based 

on Italian accelerometric data, are discussed in this study as a possible benchmark, alongside real record 

counterparts, for the validation of synthetic records. Even if multiple events would be in principle 

required, an extremely preliminary validation is carried out considering only four simulated records of the 

1980 Irpinia (Southern Italy) Mw 6.9 earthquake. Simulated records are obtained through a broadband 

hybrid integral-composite technique. Results show how this simulation method may lead to generally 

acceptable results. It is also emphasized how this kind of validation may provide additional results with 

respect to classical signal-to-signal comparison of real and simulated records. 

1. INTRODUCTION 

Modern earthquake design and assessment procedures are based on the evaluation of inelastic 

deformations of structures. In this framework, nonlinear structural analysis methods have earned 

increasing interest in scientific and professional communities. In particular, nonlinear dynamic 

analysis is becoming more common, especially for the design and the assessment of critical 

facilities (De Luca et al. 2011). On the other hand, nonlinear dynamic analyses require proper 

input selection. Thus, ground motion selection methods improved significantly in accuracy 

(PEER 2009). Notwithstanding the increased availability of strong-motion databases, it may be 

difficult to find real records’ sets that fit specific scenarios (e.g., large magnitude, small source-

to-site distance). An attractive approach can be to provide alternative seismic input, such as 

artificial or simulated records. However, the employment of these kinds of records in structural 

analysis requires systematic validation (e.g., Bazzurro and Luco 2004; Iervolino et al. 2010). It 

is important to assess whether recorded motions can be substituted by those artificial or 

simulated, and in which situation such replacement can be acceptable in terms of structural 

response. 

The main target of engineering validation of alternative accelerograms should be to check 

whether these lead to the same seismic risk, that is the probability of failure, or loss estimation, 

with respect to nominally equivalent real records, when employed in performance-based 
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earthquake engineering (PBEE); i.e., Cornell and Krawinkler 2000, Krawinkler and Miranda 

2004. This approach represents a complementary perspective with respect to the direct, and 

more common, comparison of real waveforms with their simulated counterpart. 

Intermediate validation steps (between visual record comparison and full risk assessment) 

are real-to-simulated comparisons in terms of peak and cyclic nonlinear structural response of 

single degree of freedom (SDOF) systems (Iervolino et al. 2010, Galasso et al. 2012). 

The objective of this work is to present a first step toward a comprehensive validation of 

simulated records through comparison between structural responses of synthetic records and 

empirical ground motion prediction equations (GMPEs), calibrated on real accelerograms. This 

approach considers both peak and cyclic inelastic responses taking as a benchmark the output of 

prediction equations. It is to note that all real-to-simulated comparisons (even if made in terms 

of nonlinear structural response) are pursuable only when a real records’ benchmark is 

available, while validation through prediction equations, in principle, does not need the real 

records correspondent to the simulation. In turn, for this kind of comparison records from 

multiple events should be available. 

The set of synthetic records, considered in this preliminary study, is calculated for four sites 

that recorded the 1980 (Mw 6.9) Irpinia earthquake (Ameri et al. 2011), with the broadband hybrid 

integral-composite (HIC) technique employing full-wavefield Green’s function (Gallovič and 

Brokešová 2007); see section 2. 

Prediction equations (De Luca 2011) in terms of peak and cyclic inelastic intensity 

measures, IMs, based on a constant strength reduction factor approach, are described in section 

3. Peak inelastic displacement and equivalent number of cycles are the ground motion intensity 

measures selected. The prediction equations have been developed for several nonlinear SDOF 

systems, based on a large set of ground motion data from the ITalian ACcelerometric Archive or 

ITACA (Luzi at al. 2008; Pacor et al. 2011).  

Results of the preliminary synthetic-to-GMPE comparison, made on the basis of the 

prediction equations, are provided in section 4. Finally, these results are also compared with that 

of a direct real-to-simulated comparison. 

 

2. GROUND MOTION SIMULATION 

The set of synthetic accelerograms adopted in this study is taken from Ameri et al. (2011). The 

authors, first modeled some ground motions recorded during the 1980 Irpinia earthquake in 

order to validate, from a seismological point of view, the generated synthetic seismograms. 

Then, several possible rupture processes of the Irpinia fault were considered, and the ground 

motion from these different “realizations” of the event, were calculated. This latter step was to 

capture the variability of the ground motion due to unknowns about the rupture. In particular, 54 

different rupture processes were assumed for this fault, considering 6 possible positions of the 

hypocenter, 3 values of the velocity of the rupture propagation and 3 different distributions of 

the slip on the fault. The 54 rupture models are intended to capture the first-order uncertainties 

in the parameters or, in other words, the variability in the ground motion due to uncertainty in 

the source parameter assuming a limited number of alternative models. These kinematic rupture 

parameters were constrained to vary according to the ranges reported in Ameri et al. (2011) and 

were selected in order to sample scenarios that could happen during the actual earthquake. For 

instance, some of the rupture processes may generate large motions at some sites due to 

directivity effects, or particularly high rupture velocity or proximity to a slip asperity. These 

alternative models are considered equally probable having no justifiable reason to give more 

weight to one model with respect to another. All the rupture scenarios are characterized by the 
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same magnitude (Mw 6.9, the same as the 1980 earthquake) and the ground motion is simulated 

at different distances, according to the site locations. Thus, for each site a set of 54 synthetic 

accelerograms is available, with the same magnitude and distance values. Four sites (Table 1), 

located at different distances and positions around the fault, have been selected. Moreover, since 

local site effects are not included in the simulations, those sites were chosen because, according 

to Ameri et al. (2011), local amplification does not significantly affect the ground motion. 

The adopted simulation methodology is here briefly described in order to stress that, 

differently from artificial or purely stochastic seismograms (e.g., Mucciarelli et al. 2004; 

Gasparini and Vanmarke 1976), the calculated synthetics are based on a more physical 

modeling of the earthquake source and wave propagation processes. The HIC technique 

simulates the rupture process in terms of slipping of elementary subsources with fractal number-

size distribution (fractal dimension 2), randomly placed on the fault plane (Zeng et al. 1994). At 

low frequencies, the source description is based on the representation theorem (integral 

approach, Aki and Richards 2002), assuming a final slip distribution composed from the 

subsources, which is characterized by a k-squared decay (Herrero and Bernard 1994; Gallovič 

and Brokešová 2004). At high frequency, instead, the ground motion synthesis is obtained 

summing the contributions from each individual subsource treated as a point source (composite 

approach). The Green’s functions for both frequency bands are evaluated by the discrete 

wavenumber technique (Bouchon 1981) in a layered 1D medium. This approach assures a 

broadband frequency content that satisfies the engineering needs. Moreover, as desirable, the 

model will produce coherent motion in the low-frequency band, generating for instance 

directivity pulses, and incoherent motion in the high-frequency one. 

 
Table 1. Simulated records for the 1980 Mw 6.9 Irpinia earthquake (Ameri et al. 2011), name of the 

station (Station), code of the station (Code), epicentral distance (Repi), Joyner and Boore distance (RJB), 

soil class according to Eurocode 8 (EC8 class) 

Station Code Repi [km] RJB [km] EC8 class 

Bagnoli BGI 22 7 B 

Benevento BNV 58 28 B 

Bisaccia BSC 28 18 A 

Bovino BVN 54 35 B 

 

3. PREDICTION EQUATIONS FOR NONLINEAR SDOF RESPONSE 

Inelastic displacement of SDOF systems employed as an IM for probabilistic seismic hazard 

analysis, or PSHA (e.g., McGuire 2004), is a recent enhancement of earthquake engineering 

research. Indeed, PSHA carried out in terms of inelastic IMs provides the seismic threat at a site 

by means of a parameter more informative for engineering purposes. In fact, referring to the 

PBEE framework, previous studies (Tothong and Luco 2007; PEER 2009; Tothong and Cornell 

2007) showed that the inelastic displacement of SDOF systems is efficient, sufficient and robust 

to scaling, at least when seismic risk assessment of first mode dominated structures is of 

concern. 

Non-linear SODF response IMs require ad hoc attenuation relationship for their 

employment in practical applications (e.g., Lawson 1996; Borzi and Elnashai 2000; Tothong 

and Cornell 2006; Bozorgnia et al. 2010a and 2010b). The semi-empirical models considered in 

this study (De Luca 2011), and considered in the following as a point of comparison for 

simulated records, were developed for SDOFs that have backbones characterized by bilinear 

hardening shape. Two SDOFs’ hysteretic loops have been considered: one with and one without 
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stiffness’ degradation; they are named EPH-p and EPH-k respectively, see Figure 1a. 

Structural response measures include both cyclic (e.g., energy dissipation) and peak 

response (e.g., maximum inelastic deformation) quantities. Elastic periods of the SDOFs range 

in a broad interval sampled by 20 values, from 0.04s to 2s. Level of nonlinearity is accounted 

for by different strength reduction factors (R) equal to 2, 4, 6, and 8. A constant strength 

reduction factor approach is adopted allowing every single record to show inelastic response. 

Thus, the value of the yield strength (Fy) at a given oscillation period T is a record-specific 

quantity and it is computed according to Equation 1, being m the mass of the SDOF (always 

equal to 1 kgmass), and being Sael-record(T) the ground motion elastic spectral acceleration at 

period T. 

Two IMs were selected: the displacement-based parameter is the peak inelastic 

displacement (Sdi), while the cyclic-response-related parameter is the equivalent number of 

cycles (Ne); see Equation 2. The latter is given by the cumulative hysteretic energy (EH), 

evaluated as the sum of the areas of the hysteretic cycles, normalized with respect to the largest 

cycle. The latter evaluated as the area underneath the monotonic backbone curve from the 

yielding displacement (y) to the peak inelastic displacement (Aplastic), see Figure 1b. EH is 

evaluated from the force-deformation envelope of the SDOF, discarding the force contribution 

due to damping, characterized by 5% of the critical damping ratio. Ne represents the number of 

cycles at the maximum plastic displacement that the structure can develop in order to dissipate 

the total amount of EH (Manfredi 2001) plus 1, and it has some correlation with integral strong 

motion parameters. Ne is equal to 1 in the case of elastic response (Iervolino et al., 2010a); when 

yielding displacement is not attained in the SDOF. On the other hand, the constant R approach 

excludes a priori this case. 
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Figure 1. (a) EPH-k and EPH-p SDOF backbones; (b) definition of EH and Aplastic in the case of EPH-k 

SDOF backbone for the evaluation of Ne. 

The dataset is comprised of 747 two-component waveforms from 103 earthquakes in the 4.1-6.9 

Mw range, with hypocentral depth within 30 km, and recorded by 150 stations in the 0-200km 

distance range. The epicentral distance (Repi), for magnitude lower than 5.5 events, and the 

closest distance to fault projection or Joyner and Boore distance (Joyner and Boore 1981), RJB, 
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for stronger earthquakes, were considered; see Figure 2. All stations are classified for site 

conditions following Eurocode 8 or EC8 (CEN 2004) categories. Five soil classes are 

considered: A, B, C, D, E. Most of site categories were assigned from geological and 

geophysical data (Di Capua et al. 2011), while about 30% from direct measurements of the 

value of the average shear wave velocity in the uppermost 30 meters,VS,30. 

 
Figure 2. Dataset: magnitude versus distance (Repi or RJB) plot of the dataset, grouped according to the 

Eurocode 8 (CEN 2004) site classification. 

To establish the functional form to predict the inelastic IMs, the model proposed by Bindi et al. 

(2011), for elastic spectral acceleration response spectra, was considered first. The prediction 

equation models have the general form of Equation 3, being Y the geometric mean of the North-

South and East-West components for Sdi or Ne. FD, FM, FS, and FR are functions describing 

distance, magnitude, site amplification, and nonlinearity dependence of the IMs, while a is a 

constant term. The specific expressions to be adopted in the case of Sdi are FD1 and FM1; while in 

the case of Ne are FD2 and FM2, as shown in Equation 4 to Equation 7. As mentioned, magnitude 

measure is Mw, distance is RJB, or Repi (in km). Mref, Mh, Rref are constants. The term FS is given 

by FS=sjCj, for j=1,…,5, where sj are the coefficients, while Cj are dummy variables used to 

denote the five different EC8 site classes (A to E). The term FR is given by FR=rkCk, for 

k=2,4,6,8, where rk are the coefficients, and Ck are dummy variables used to denote the four 

different strength reduction factors considered. In the regressions, s1 (corresponding to EC8-A 

site class) and r2 (corresponding to R=2) were constrained to be equal to 0. 

As a side result, and employing the same functional form of Equation 3 to Equation 5, 

obviously excluding the FR term, also a prediction equation for elastic displacements (Sdelastic) 

was obtained. Regression coefficients for elastic, inelastic displacements, and equivalent 

number of cycles for EPH-k and EPH-p systems, not reported here for the sake of brevity, can 

be found in (De Luca 2011). 

An example of the performance of the predictive models is shown Figure 3, where the 

estimates for a magnitude 6.0 earthquake at two periods (T equal to 0.2s and 1.0s) are plotted as 

a function of distance for the A site class and R=4. The predictions are reported for both the 

considered systems (EPH-k and EPH-p) and they are compared with Sdi or Ne data for a 

magnitude interval of 6.0±0.3. As expected, the differences in the hysteretic loop between EPH-

k and EPH-p systems have an effect on cyclic response, while peak estimates are similar in the 

two cases. 

The standard deviation of residuals (logY) associated to the median of the predictions 

equations are shown in Table 2 for Sdelastic, Sdi, and Ne for both the EPH-k and EPH-p SDOF 
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systems. For each IM considered, the total (TOT), the between-event (B), or inter-event, and 

within-event (W), or intra-event, standard deviations are shown as well. The values of B and 

W presented in this study were not published in De Luca (2011) where only TOT was given. 

The within-event variability (W) is generally larger than the between-event (B) standard 

deviation, for elastic and inelastic spectral displacements, for both the SDOFs considered, and it 

becomes prominent in the case of equivalent number of cycles. Ne is characterized by 

smallerTOT, B, and W with respect to Sdi. This trend may be a result of the integral and 

normalized nature of this IM. 
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Table 2. Standard deviation of residuals (logY) associated to the median prediction on the models in 

Equation 2. 

T[s] elasticSd  

b2 

,i EPH kSd   

H 

,i EPH pSd   

s4 

,e EPH kN   

h 

,e EPH pN   

s4 
TOT  B  W  TOT  B  W  TOT  B  W  TOT  B  W  TOT  B  W  

0.04 0.361 0.222 0.285 0.400 0.281 0.284 0.381 0.270 0.269 0.184 0.108 0.148 0.191 0.116 0.152 

0.07 0.371 0.218 0.299 0.401 0.278 0.288 0.388 0.274 0.276 0.177 0.101 0.146 0.193 0.108 0.160 

0.1 0.379 0.227 0.304 0.391 0.268 0.284 0.385 0.270 0.274 0.169 0.092 0.142 0.186 0.104 0.154 

0.15 0.384 0.247 0.293 0.381 0.259 0.280 0.378 0.262 0.273 0.159 0.085 0.134 0.172 0.096 0.142 

0.2 0.401 0.275 0.291 0.376 0.257 0.274 0.378 0.260 0.274 0.150 0.077 0.128 0.162 0.090 0.135 

0.25 0.395 0.274 0.285 0.377 0.256 0.276 0.379 0.262 0.274 0.152 0.077 0.131 0.163 0.093 0.134 

0.3 0.380 0.271 0.266 0.377 0.259 0.274 0.383 0.266 0.275 0.150 0.077 0.128 0.162 0.093 0.132 

0.35 0.369 0.262 0.259 0.375 0.260 0.270 0.380 0.265 0.273 0.153 0.082 0.130 0.161 0.092 0.132 

0.4 0.357 0.251 0.253 0.372 0.260 0.266 0.378 0.264 0.271 0.150 0.079 0.128 0.159 0.091 0.130 

0.45 0.355 0.244 0.258 0.373 0.261 0.266 0.379 0.264 0.272 0.154 0.083 0.130 0.160 0.092 0.131 

0.5 0.352 0.238 0.258 0.373 0.263 0.265 0.380 0.265 0.271 0.154 0.081 0.130 0.158 0.092 0.129 

0.6 0.358 0.249 0.257 0.373 0.265 0.263 0.380 0.267 0.270 0.153 0.083 0.128 0.158 0.092 0.128 

0.7 0.358 0.247 0.258 0.372 0.265 0.261 0.382 0.270 0.270 0.154 0.082 0.130 0.159 0.094 0.128 

0.8 0.360 0.250 0.259 0.373 0.265 0.263 0.382 0.268 0.272 0.154 0.081 0.131 0.156 0.089 0.128 

0.9 0.364 0.252 0.263 0.375 0.267 0.264 0.384 0.271 0.272 0.151 0.076 0.130 0.150 0.083 0.125 

1 0.365 0.255 0.261 0.378 0.269 0.265 0.384 0.271 0.272 0.148 0.078 0.126 0.149 0.084 0.123 

1.25 0.371 0.255 0.270 0.382 0.275 0.266 0.388 0.273 0.275 0.148 0.080 0.125 0.146 0.086 0.118 

1.5 0.380 0.257 0.280 0.386 0.272 0.273 0.389 0.271 0.280 0.153 0.081 0.129 0.146 0.085 0.119 

1.75 0.384 0.256 0.285 0.386 0.270 0.276 0.391 0.272 0.281 0.158 0.072 0.141 0.146 0.082 0.121 

2 0.378 0.245 0.287 0.388 0.271 0.278 0.392 0.271 0.283 0.171 0.076 0.153 0.151 0.086 0.124 
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Figure 3. Sdi and Ne estimates for a magnitude 6.0 earthquake, soil type A and R equal to 4 at two 

natural periods (T = 0.2s and 1.0s) for both EPH-k and EPH-p systems, plotted as a function of RJB and 

compared with the corresponding data for a magnitude interval of 6.0 ± 0.3. 

4. ANALYSES AND RESULTS 

The preliminary validation carried out herein is provided for the simulated records at four sites 

for the 1980 (Mw 6.9) Irpinia earthquake, described in section 2, and employing as benchmark 

the prediction equations described in section 3. 

Table 1 shows stations’ identifiers, distances and EC8 soil classification of the sites. Figure 

4 shows the first comparison in terms of Sdelastic. In Figure 4, elastic displacement spectra are 

plotted for both the 54 simulated seismograms (grey solid lines), their median, and the real 

records; then, they are compared with the median estimates of the GMPE (black solid lines). 

The standard deviation bands are computed as log10 Ym 
, in which mlogY is the median estimate of 

the GMPE and  is the standard deviation of the logarithm.  

Two different  have been employed: the total standard deviation (TOT), and the within or 

intra-event standard deviation (W), represented in Figure 4 with dotted lines. The 54 

simulations depict a significant variability of the elastic spectral ordinates that is produced by 

the variations of the kinematic rupture parameters. It is worth noting that such variability is, in 

any case, of the same order of the ±W bands associated to the median empirical estimations. In 

the following, when referring to over- or under- estimation, it is meant that the simulated 

records are lower or higher than the median estimate, and they are outside the   bands 

evaluated as described above. 

For some periods and sites, some underestimation can be observed when comparing 

simulations with GMPE’s estimates. However, this applies also to real records. In fact, the 

observed spectra are generally enclosed in simulated ones. Especially the results at BNV and 

BVN stations imply that the ground motion recorded from the Irpinia earthquake was smaller 
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than that predicted by a GMPE developed for the whole Italian territory‡. It is also important to 

stress that only BGI record is included in the dataset employed for the estimation of the 

prediction equations. 

Figure 5 shows the same plots provided in Figure 4. In this case the comparisons are carried 

out in terms of Sdi for EPH-k system, and R=4 and R=8. For BNV and BVN stations both 

simulated and real records are below the median from GMPE. 

 

 

Figure 4. Median spectra of the prediction equation for Sdelastic with their 
TOT

 and 
W

 bands 

compared with the corresponding spectra of the 54 simulated, their median (msynth), and the real (real) 

records at the stations BGI, BSC, BNV, and BVN. 

 

 

Figure 5. Median spectra of the prediction equation for Sdi, EPH-k system, R=4 and 8, with their 
TOT



and 
W

 bands compared with the corresponding spectra of the 54 simulated, their median (msynth), and 

the real (real) records at the stations BGI, BSC, BNV, and BVN. 

The very preliminary comparison with the prediction equations in terms of peak elastic and 

inelastic response suggests that the simulated records generated with HIC technique may be 

considered compatible with what expected from real records. Such results may find some 

analogy with the findings regarding peak inelastic response of artificial records, (different in 

nature with respect to those synthetic herein), when compared to real records in the case of 

response spectrum matching criterion (Iervolino et al. 2010). 

In Figure 6 and Figure 7, Ne spectra are shown in the case of R=4 and R=8, for both EPH-k 

and EPH-p SDOFs, respectively. In the case of Ne response (representative of cyclic response), 

both EPH-k and EPH-p SDOF have been considered; given the differences observed in the 

trends shown in Figure 3. For both EPH-k and EPH-p, the 54 simulations provide a cyclic 

                                                 
‡ In this sense, it is to note that the bias of the mean of data from the Irpinia earthquake was not removed 

when making the comparison. 



9 

 

response generally around or below the   band of the GMPE; i.e., systematically lower than 

the median estimate of the GMPE. However, again, also the real counterparts of the simulation 

are mostly below the median from the GMPE.  

In Figure 6 and 7, it is also confirmed the typical trend of Ne spectra. In fact, they are 

characterized by a strictly decreasing trend: high values for small period range, and a more mild 

decay in the medium-to-long period range (see Manfredi 2001; Iervolino et al. 2010). 

 

 

 

Figure 6. Median spectra of the prediction equation for Ne, EPH-k system, R=4 and 8, with their 
TOT



and 
W

 bands compared with the corresponding spectra of the 54 simulated, their median (msynth), and 

the real (real) records at the stations BGI, BSC, BNV, and BVN. 

 

 

Figure 7. Median spectra of the prediction equation for Ne, EPH-p system, R=4 and 8, with their 
TOT



and 
W

 bands compared with the corresponding spectra of the 54 simulated, their median (msynth), and 

the real (real) records at the stations BGI, BSC, BNV, and BVN. 

The slight underestimation of Ne spectra in simulated records, at some stations, may also have a 

reason in the fact that the HIC synthetic records in the study use a 1D crustal model. Indeed, the 

complexity of the Earth’s crust produces a number of reflected and refracted waves that increase 

the overall duration of the seismogram with respect to a simple 1D model. 

The above preliminary findings on cyclic response of simulated records are significantly 

different with respect to the findings for cyclic response to spectral matched artificial 
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accelerograms (Iervolino et al. 2010). In fact, artificial accelerograms are characterized by 

significant overestimation of the cyclic structural response. This difference may be expected 

because, artificial records does not explicitly account for source and path effect on durations, 

while they are intentionally designed to capture (elastic) spectral response. 

In Figure 8, a comparison of the relative errors of the medians of the 54 simulations with 

respect to the median estimate of the GMPE (msynth vs mGMPE) and with respect to the real 

records (msynth vs real) is carried out for the case of elastic displacements and peak and cyclic 

inelastic responses, for R equal to 4. The expression for the evaluation of the relative errors in 

Figure 8 is shown in Equation 8. The symbol msynth vs mGMPE, in Figure 8, indicates the relative 

errors of the median value of the 54 simulations (msynth) with respect to the median estimate of 

the GMPE (mGMPE). The symbol msynth vs real, in Figure 8, indicates the relative errors of msynth 

with respect to the responses of the real records considered (realspectral-response). 

 

 

 

 

 

 
Figure 8. Relative errors of the median of the 54 synthetic records (msynth) with respect to the median 

estimate of the prediction equation (msynth vs mGMPE) and with respect to real records (msynth vs real) 

evaluated for Sdelastic, Sdi for the EPH-k system and Ne for both EPH-k and EPH-p systems for R=4. 
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The comparisons in Figure 8 better quantify the results presented and discussed above. The 

average value of the relative errors of the simulations with respect to the GMPE (msynth vs 

GMPE) can reach also 50% for both peak and cyclic response; however, at least some of this 

bias may be attributed to the fact that also real records generally show some bias with respect to 

the median from the GMPE.  

4. CONCLUSIONS 

Prediction equations in term of peak and cyclic inelastic response can be employed as a 

benchmark for engineering validation of simulated records. The validation made in terms of 

prediction equations, along with real records, lies at the core of the problem; in fact, as long as 

simulated records are employed in nonlinear dynamic analyses as substitutes of real records, the 

main target is that they lead to the same conclusion in terms of risk assessment. 

An extremely preliminary (because using records from one event only) validation example, 

referred to the case of four sites for the 1980 Irpinia, Mw 6.9, earthquake was carried out 

focusing on the comparison of validation made by means of prediction equations along with the 

more typical simulated-to-real validation approach. In the example provided, elastic 

displacements, inelastic displacements, and equivalent number of cycles, for different strength 

reduction factors, were controlled as informative intensity measures for peak and cyclic 

response to be employed in the validation. The first, expected, conclusion is that nonlinear 

response rather than the only elastic one can provide additional significant results to the 

validation procedure. 

The application carried out in the study found some agreement of the simulated records with 

respect to those real and general compatibility of the former with respect to the prediction 

equations in terms of non-linear SDOF response, also considering the used simulation model 

with respect to the actual 3-dimensional crustal structure. 

Notwithstanding the very preliminary character of the results provided, given the small 

sample of records considered; the validation approach through prediction equations of peak and 

cyclic inelastic response is a first step towards a systematical engineering validation of physics-

based simulated records. 
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