53 research outputs found

    Association of exposure to perfluoroalkyl substances (PFAS) and phthalates with thyroid hormones in adolescents from HBM4EU aligned studies

    Get PDF
    Background: Perfluoroalkyl substances (PFAS) and phthalates are synthetic chemicals widely used in various types of consumer products. There is epidemiological and experimental evidence that PFAS and phthalates may alter thyroid hormone levels; however, studies in children and adolescents are limited. Aim: To investigate the association of exposure to PFAS and phthalate with serum levels of thyroid hormones in European adolescents. Methods: A cross-sectional study was conducted in 406 female and 327 male adolescents (14–17 years) from Belgium, Slovakia, and Spain participating in the Aligned Studies of the HBM4EU Project (FLEHS IV, PCB cohort, and BEA, respectively). Concentrations of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), free thyroxine (FT4), free triiodothyronine (FT3), and thyroid-stimulating hormone (TSH) were measured in sera from study participants, and urinary metabolites of six phthalates (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP) and the non-phthalate plasticizer DINCH® were quantified in spot urine samples. Associations were assessed with linear regression and g-computational models for mixtures. Effect modification by sex was examined. Results: In females, serum PFOA and the PFAS mixture concentrations were associated with lower FT4 and higher FT3 levels; MEP and the sums of DEHP, DiNP, and DINCH® metabolites ( ∑DEHP, ∑DiNP, and ∑DINCH) were associated with higher FT4; ∑DEHP with lower FT3; and the phthalate/DINCH® metabolite mixture with higher FT4 and lower FT3. In males, PFOA was associated with lower FT4 and the PFAS mixture with higher TSH levels and lower FT4/TSH ratio; MEP and ∑DiNP were associated with higher FT4; and MBzP, ∑DEHP, and the phthalate/DINCH® metabolite mixture with lower TSH and higher FT4/TSH. PFOA, mono-(2-ethyl-5-hydroxyhexyl) phthalate (OH-MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (oxo-MEHP), and monocarboxyoctyl phthalate (MCOP) made the greatest contribution to the mixture effect. Conclusions: Results suggest that exposure to PFAS and phthalates is associated with sex-specific differences in thyroid hormone levels in adolescent

    Prenatal and postnatal exposure to persistent organic pollutants and Infant growth: A pooled analysis of seven european birth cohorts

    Get PDF
    Background: Infant exposure to persistent organic pollutants (POPs) may contribute to obesity. However, many studies so far have been small, focused on transplacental exposure, used an inappropriate measure to assess postnatal exposure through breastfeeding if any, or did not discern between prenatal and postnatal effects. Objectives: We investigated prenatal and postnatal exposure to POPs and infant growth (a predictor of obesity). Methods: We pooled data from seven European birth cohorts with biomarker concentrations of polychlorinated biphenyl 153 (PCB-153) (n = 2,487), and p,p´-dichlorodiphenyldichloroethylene (p,p´-DDE) (n = 1,864), estimating prenatal and postnatal POPs exposure using a validated pharmacokinetic model. Growth was change in weight-for-age z-score between birth and 24 months. Per compound, multilevel models were fitted with either POPs total exposure from conception to 24 months or prenatal or postnatal exposure. Results: We found a significant increase in growth associated with p,p´-DDE, seemingly due to prenatal exposure (per interquartile increase in exposure, adjusted β = 0.12; 95% CI: 0.03, 0.22). Due to heterogeneity across cohorts, this estimate cannot be considered precise, but does indicate that an association with infant growth is present on average. In contrast, a significant decrease in growth was associated with postnatal PCB-153 exposure (β = –0.10; 95% CI: –0.19, –0.01). Conclusion: To our knowledge, this is the largest study to date of POPs exposure and infant growth, and it contains state-of-the-art exposure modeling. Prenatal p,p´-DDE was associated with increased infant growth, and postnatal PCB-153 with decreased growth at European exposure levels

    Birth Weight and Prenatal Exposure to Polychlorinated Biphenyls (PCBs) and Dichlorodiphenyldichloroethylene (DDE): A Meta-analysis within 12 European Birth Cohorts

    Get PDF
    Objectives: Exposure to high concentrations of persistent organochlorines may cause fetal toxicity, but the evidence at low exposure levels is limited. Large studies with substantial exposure contrasts and appropriate exposure assessment are warranted. Within the framework of the EU (European Union) ENRIECO (ENvironmental Health RIsks in European Birth Cohorts) and EU OBELIX (OBesogenic Endocrine disrupting chemicals: LInking prenatal eXposure to the development of obesity later in life) projects, we examined the hypothesis that the combination of polychlorinated biphenyls (PCBs) and dichlorodiphenyldichloroethylene (DDE) adversely affects birth weight

    Rational design and direct fabrication of multi-walled hollow electrospun fibers with controllable structure and surface properties

    Get PDF
    Multi-walled hollow fibers with a novel architecture are fabricated through utilizing a direct,one-step tri-axial electrospinning process with a manufacturing methodology which does not require any post-treatments for the removal of core material for creating hollowness in the fiber structure. The hydrophilicity of both inner and outer layers’ solution needs to be dissimilar and carefully controlled for creating a two-walled/layered hollow fiber tructure with a sharp interface. To this end, Hansen solubility parameters are used as n index of layer solution affinity hence allowing for control of diffusion across the layers and the surface porosity whereby an ideal multi-walled hollow electrospun fiber is shown to be producible by tri-axial electrospinning process. Multi-walled hollow electrospun fibers with different inner and outer diameters and different surface morphology are successfully produced by using dissimilar material combinations for inner and outer layers (i.e., hydrophobic polymers as outer layer and hydrophilic polymer as inner layer). Upon using different material combinations for inner and outer layers, it is shown that one may control both the outer and inner diameters of the fiber. The inner layer not only acts as a barrier and thus provides an ease in the encapsulation of functional core materials of interest with different viscosities but also adds stiffness to the fiber. The structure and the surface morphology of fibers are controlled by changing applied voltage, polymer types, polymer concentration, and the evaporation rate of solvents. It is demonstrated that if the vapor pressure of the solvent for a given outer layer polymer is low, the fiber diameter decreases down to 100 nm whereas solvents with higher vapor pressure result in fibers with the outer diameter of up to 1 μm. The influence of electric field strength on the shape of Taylor cone is also monitored during the production process and the manufactured fibers are structurally investigated by relevant surface characterization techniques

    Health impact assessment of waste management facilities in three European countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Policies on waste disposal in Europe are heterogeneous and rapidly changing, with potential health implications that are largely unknown. We conducted a health impact assessment of landfilling and incineration in three European countries: Italy, Slovakia and England.</p> <p>Methods</p> <p>A total of 49 (Italy), 2 (Slovakia), and 11 (England) incinerators were operating in 2001 while for landfills the figures were 619, 121 and 232, respectively. The study population consisted of residents living within 3 km of an incinerator and 2 km of a landfill. Excess risk estimates from epidemiological studies were used, combined with air pollution dispersion modelling for particulate matter (PM<sub>10</sub>) and nitrogen dioxide (NO<sub>2</sub>). For incinerators, we estimated attributable cancer incidence and years of life lost (YoLL), while for landfills we estimated attributable cases of congenital anomalies and low birth weight infants.</p> <p>Results</p> <p>About 1,000,000, 16,000, and 1,200,000 subjects lived close to incinerators in Italy, Slovakia and England, respectively. The additional contribution to NO<sub>2 </sub>levels within a 3 km radius was 0.23, 0.15, and 0.14 μg/m<sup>3</sup>, respectively. Lower values were found for PM<sub>10</sub>. Assuming that the incinerators continue to operate until 2020, we are moderately confident that the annual number of cancer cases due to exposure in 2001-2020 will reach 11, 0, and 7 in 2020 and then decline to 0 in the three countries in 2050. We are moderately confident that by 2050, the attributable impact on the 2001 cohort of residents will be 3,621 (Italy), 37 (Slovakia) and 3,966 (England) YoLL. The total exposed population to landfills was 1,350,000, 329,000, and 1,425,000 subjects, respectively. We are moderately confident that the annual additional cases of congenital anomalies up to 2030 will be approximately 2, 2, and 3 whereas there will be 42, 13, and 59 additional low-birth weight newborns, respectively.</p> <p>Conclusions</p> <p>The current health impacts of landfilling and incineration can be characterized as moderate when compared to other sources of environmental pollution, e.g. traffic or industrial emissions, that have an impact on public health. There are several uncertainties and critical assumptions in the assessment model, but it provides insight into the relative health impact attributable to waste management.</p

    EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021)

    Get PDF
    Funding Information: The authors would like to thank everybody who contributed to the HBM4EU Aligned Studies: the participating children, teenagers, adults and their families, the fieldworkers that collected the samples and database managers that made the information available to HBM4EU, the HBM4EU project partners, especially those from WP7 for developing all materials supporting the fieldwork, WP9 for organizing the QA/QC scheme under HBM4EU and all laboratories who performed the analytical measurements. We would like to acknowledge Sun Kyoung Jung from the National Institute of Environmental Research of South-Korea for providing the KoNEHS Cycle III results (crt adjusted). HBM4EU is co-financed under Horizon 2020 (grant agreement No 733032). The authors thank all principal investigators of the contributing studies for their participation and contribution to the HBM4EU Aligned Studies and the national program owners for their financial support. Further details on funding for all the participating studies can be found in the Supplemental Material, Table S12.As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6–12 years, (ii) 3,117 teenagers aged 12–18 years and (iii) 4,102 young adults aged 20–39 years. The participants were recruited between 2014 and 2021 in 11–12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures.publishersversionpublishe

    Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021)

    Get PDF
    HBM4EU is co-financed under Horizon 2020 (grant agreement No 733032).As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants from three age groups: (i) 3,576 children aged 6-12 years, (ii) 3,117 teenagers aged 12-18 years, and (iii) 4,102 young adults aged 20-39 years. The participants were recruited between 2014 and 2021 in 11-12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, and benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs, and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with the highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European-wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability, and will give leverage to national policymakers for the implementation of targeted measures.info:eu-repo/semantics/publishedVersio

    From science to policy: How European HBM indicators help to answer policy questions related to phthalates and DINCH exposure

    Get PDF
    Within the European Human Biomonitoring (HBM) Initiative HBM4EU we derived HBM indicators that were designed to help answering key policy questions and support chemical policies. The result indicators convey information on chemicals exposure of different age groups, sexes, geographical regions and time points by comparing median exposure values. If differences are observed for one group or the other, policy measures or risk management options can be implemented. Impact indicators support health risk assessment by comparing exposure values with health-based guidance values, such as human biomonitoring guidance values (HBM-GVs). In general, the indicators should be designed to translate complex scientific information into short and clear messages and make it accessible to policy makers but also to a broader audience such as stakeholders (e.g. NGO's), other scientists and the general public. Based on harmonized data from the HBM4EU Aligned Studies (2014-2021), the usefulness of our indicators was demonstrated for the age group children (6-11 years), using two case examples: one phthalate (Diisobutyl phthalate: DiBP) and one non-phthalate substitute (Di-isononyl cyclohexane-1,2- dicarboxylate: DINCH). For the comparison of age groups, these were compared to data for teenagers (12-18 years), and time periods were compared using data from the DEMOCOPHES project (2011-2012). Our result indicators proved to be suitable for demonstrating the effectiveness of policy measures for DiBP and the need of continuous monitoring for DINCH. They showed similar exposure for boys and girls, indicating that there is no need for gender focused interventions and/or no indication of sex-specific exposure patterns. They created a basis for a targeted approach by highlighting relevant geographical differences in internal exposure. An adequate data basis is essential for revealing differences for all indicators. This was particularly evident in our studies on the indicators on age differences. The impact indicator revealed that health risks based on exposure to DiBP cannot be excluded. This is an indication or flag for risk managers and policy makers that exposure to DiBP still is a relevant health issue. HBM indicators derived within HBM4EU are a valuable and important complement to existing indicator lists in the context of environment and health. Their applicability, current shortcomings and solution strategies are outlined

    Status of LEPR gene in PCB-exposed population: A quick look

    No full text
    Earlier, we have reported that Polychlorinated Biphenyls (PCBs) exposure in Slovak population has made differential gene expression that has linked to the possibilities of some diseases and disorder development in the studied population. Here we report that down-regulation of LEPR (Leptin receptor) gene in the 45-month children may have been following consequences in developing obesity later in life. A pilot high-throughput qRT-PCR [Taqman Low Density Array (TLDA)] study in a small population also corroborated the gene-expression results, and their pathways underlying the consequences of the diseases, amid further detailed large-scale population validation. The study shows the opportunity of predicting long-term effects of chemical exposures using selected genomic classifiers may reflect exposure effect and risk from environmental toxicants
    corecore