26 research outputs found

    Process-based framework for precise neuromodulation

    Get PDF
    Functional MRI neurofeedback (NF) allows humans to self-modulate neural patterns in specific brain areas. This technique is regarded as a promising tool to translate neuroscientific knowledge into brain-guided psychiatric interventions. However, its clinical implementation is restricted by unstandardized methodological practices, by clinical definitions that are poorly grounded in neurobiology, and by lack of a unifying framework that dictates experimental choices. Here we put forward a new framework, termed ‘process-based NF’, which endorses a process-oriented characterization of mental dysfunctions to form precise and effective psychiatric treatments. This framework relies on targeting specific dysfunctional mental processes by modifying their underlying neural mechanisms and on applying process-specific contextual feedback interfaces. Finally, process-based NF offers designs and a control condition that address the methodological shortcomings of current approaches, thus paving the way for a precise and personalized neuromodulation

    Neurofeedback through the lens of reinforcement learning

    No full text
    Despite decades of experimental and clinical practice, the neuropsychological mechanisms underlying neurofeedback (NF) training remain obscure. NF is a unique form of reinforcement learning (RL) task, during which participants are provided with rewarding feedback regarding desired changes in neural patterns. However, key RL considerations - including choices during practice, prediction errors, credit-assignment problems, or the exploration-exploitation tradeoff - have infrequently been considered in the context of NF. We offer an RL-based framework for NF, describing different internal states, actions, and rewards in common NF protocols, thus fashioning new proposals for characterizing, predicting, and hastening the course of learning. In this way we hope to advance current understanding of neural regulation via NF, and ultimately to promote its effectiveness, personalization, and clinical utility

    Phototransport Properties of a-SiC:H Alloys

    No full text
    We report a study of the mobility-lifetime products of the two charge carriers in a-SiC:H alloys. The measurements were carried out as a function of the carbon concentration and the temperature. An analysis, relying on the interpretation of the corresponding light intensity exponents, indicates that neutral dangling bonds control the electrons' lifetime while another recombination center controls the holes' lifetime.UCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de Físic

    The scientific study of consciousness cannot and should not be morally neutral

    Get PDF
    A target question for the scientific study of consciousness is how dimensions of consciousness, such as the ability to feel pain and pleasure or reflect on one’s own experience, vary in different states and animal species. Considering the tight link between consciousness and moral status, answers to these questions have implications for law and ethics. Here we point out that given this link, the scientific community studying consciousness may face implicit pressure to carry out certain research programs or interpret results in ways that justify current norms rather than challenge them. We show that because consciousness largely determines moral status, the use of nonhuman animals in the scientific study of consciousness introduces a direct conflict between scientific relevance and ethics—the more scientifically valuable an animal model is for studying consciousness, the more difficult it becomes to ethically justify compromises to its well-being for consciousness research. Finally, in light of these considerations, we call for a discussion of the immediate ethical corollaries of the body of knowledge that has accumulated and for a more explicit consideration of the role of ideology and ethics in the scientific study of consciousness
    corecore