23 research outputs found

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Vivax malaria in an Amazonian child with dilated cardiomyopathy

    No full text
    Abstract A child living in the Brazilian Amazon region who had had vivax malaria at the age of 11 months was admitted three months later with a history of progressive dyspnoea and fever, which culminated in respiratory distress and severe dilated cardiomyopathy at hospital admission in a malaria-free area. She received treatment for cardiac insufficiency and was tested for malaria with two thick blood smears, which were negative. There was general improvement of cardiorespiratory function in the next two weeks, but in the third week of hospital admission, there was re-appearance of fever, severe anaemia, severe plaquetopaenia, and respiratory distress. A third thick blood smear was positive for Plasmodium vivax mono-infection, which was confirmed by molecular methods. A serological panel with the most prevalent infectious agents known to cause myocarditis was performed, and specific anti-cytomegalovirus (CMV) IgM and elevated levels of anti-CMV IgG were also detected in the serum. After treatment for malaria, there was improvement of respiratory distress, although cardiac function did not recover. She was discharged home with drugs for cardiac insufficiency and is currently under follow-up with a paediatric cardiologist as an outpatient. This report presents a young child with several episodes of vivax malaria who suffers from cardiac insufficiency, probably related to CMV-induced myocarditis

    <i>HLA-G</i> Gene Variability Is Associated with Papillary Thyroid Carcinoma Morbidity and the HLA-G Protein Profile

    No full text
    Human leukocyte antigen (HLA)-G is an immune checkpoint molecule that is highly expressed in papillary thyroid carcinoma (PTC). The HLA-G gene presents several functional polymorphisms distributed across the coding and regulatory regions (5′URR: 5′ upstream regulatory region and 3′UTR: 3′ untranslated region) and some of them may impact HLA-G expression and human malignancy. To understand the contribution of the HLA-G genetic background in PTC, we studied the HLA-G gene variability in PTC patients in association with tumor morbidity, HLA-G tissue expression, and plasma soluble (sHLA-G) levels. We evaluated 185 PTC patients and 154 healthy controls. Polymorphic sites defining coding, regulatory and extended haplotypes were characterized by sequencing analyses. HLA-G tissue expression and plasma soluble HLA-G levels were evaluated by immunohistochemistry and ELISA, respectively. Compared to the controls, the G0104a(5′URR)G*01:04:04(coding)UTR-03(3’UTR) extended haplotype was underrepresented in the PTC patients, while G0104a(5′URR)G*01:04:01(coding)UTR-03(3′UTR) was less frequent in patients with metastatic and multifocal tumors. Decreased HLA-G tissue expression and undetectable plasma sHLA-G were associated with the G010102a(5′URR)G*01:01:02:01(coding)UTR-02(3′UTR) extended haplotype. We concluded that the HLA-G variability was associated with PTC development and morbidity, as well as the magnitude of the encoded protein expression at local and systemic levels

    Exposure to Inorganic Mercury Causes Oxidative Stress, Cell Death, and Functional Deficits in the Motor Cortex

    No full text
    Mercury is a toxic metal that can be found in the environment in three different forms – elemental, organic and inorganic. Inorganic mercury has a lower liposolubility, which results in a lower organism absorption and reduced passage through the blood–brain barrier. For this reason, exposure models that use inorganic mercury in rats in order to evaluate its effects on the central nervous system are rare, especially in adult subjects. This study investigated if a chronic exposure to low doses of mercury chloride (HgCl2), an inorganic form of mercury, is capable of promoting motor alterations and neurodegenerative in the motor cortex of adult rats. Forty animals were exposed to a dose of 0.375 mg/kg/day, for 45 days. They were then submitted to motor evaluation and euthanized to collect the motor cortex. Measurement of mercury deposited in the brain parenchyma, evaluation of oxidative balance, quantification of cellular cytotoxicity and apoptosis and density of mature neurons and astrocytes of the motor cortex were performed. It was observed that chronic exposure to inorganic mercury caused a decrease in balance and fine motor coordination, formation of mercury deposits and oxidative stress verified by the increase of lipoperoxidation and nitrite concentration and a decrease of the total antioxidant capacity. In addition, we found that this model of exposure to inorganic mercury caused cell death by cytotoxicity and induction of apoptosis with a decreased number of neurons and astrocytes in the motor cortex. Our results provide evidence that exposure to inorganic mercury in low doses, even in spite of its poor ability to cross biological barriers, is still capable of inducing motor deficits, cell death by cytotoxicity and apoptosis, and oxidative stress in the motor cortex of adult rats
    corecore