24,141 research outputs found

    Observations and possible function of the striking anterior coloration pattern of Galathea intermedia (Crustacea: Decapoda: Anomura)

    Get PDF
    Galathea intermedia is common, but cryptic, on Clyde maerl deposits where it lives in small groups of mixed sex and age, sharing shelters (typically dead Dosinia shells) to avoid predation. Its appearance is marked by six iridescent blue spots which may play an important role in intra- or interspecific interactions

    The changing immunology of organ transplantation

    Get PDF
    The engrafted organ becomes a chimera as the recipient's leukocytes station themselves in the transplant. Remarkably, the recipient becomes chimeric as well, in a reverse migration involving immune cells from the graft. Interactions between donor and recipient cells are tolerogenic-a process with implications for the goal of graft acceptance with minimal immunosuppression

    Spatial imaging of Zn and other elements in Huanglongbing-affected grapefruit by synchrotron-based micro X-ray fluorescence investigation

    Get PDF
    Huanglongbing (HLB) is a highly destructive, fast-spreading disease of citrus, causing substantial economic losses to the citrus industry worldwide. Nutrient levels and their cellular distribution patterns in stems and leaves of grapefruit were analysed after graft-inoculation with lemon scions containing 'Candidatus Liberibacter asiaticus' (Las), the heat-tolerant Asian type of the HLB bacterium. After 12 months, affected plants showed typical HLB symptoms and significantly reduced Zn concentrations in leaves. Micro-XRF imaging of Zn and other nutrients showed that preferential localization of Zn to phloem tissues was observed in the stems and leaves collected from healthy grapefruit plants, but was absent from HLB-affected samples. Quantitative analysis by using standard references revealed that Zn concentration in the phloem of veins in healthy leaves was more than 10 times higher than that in HLB-affected leaves. No significant variation was observed in the distribution patterns of other elements such as Ca in stems and leaves of grapefruit plants with or without graft-inoculation of infected lemon scions. These results suggest that reduced phloem transport of Zn is an important factor contributing to HLB-induced Zn deficiency in grapefruit. Our report provides the first in situ, cellular level visualization of elemental variations within the tissues of HLB-affected citrus. © 2014 © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology

    Lithium, sodium and potassium enolate aggregates and monomers: syntheses and structures

    Get PDF
    \ua9 2024 The Royal Society of Chemistry. In this Article, we report the syntheses and comparative structural studies of lithium, sodium, and potassium anthracen-9-yl enolates, as their aggregates (Li, Na: hexamer; K: tetramer) and ligand-stabilized monomers (for Li and Na). The monomers add new members to the rare collection of group-1 metal monomeric enolates. Moreover, the series covers different group-1 metal cations (Li+, Na+ and K+) and aggregate sizes, allowing comparative structural studies to elucidate how the metal identity and aggregate size influence the enolate structure

    Long-term clinical, immunologic and virologic impact of glucocorticoids on the chronic phase of HIV infection

    Get PDF
    BACKGROUND: To test the hypothesis of down-regulating the increased immune system activation/destruction process associated with chronic HIV infection, we focused our interest on prednisolone (PDN), because we had showed that, in vitro, PDN had a strong anti-apoptotic activity on activated T cells of HIV-infected patients and no effect on viral replication. We thus designed in 1992 a pilot study to evaluate the clinical, immunologic and virologic effects of PDN. The drug was given to a group of 44 patients with CD4 T cells over 200/μl. After one year, no patient had developed clinical AIDS and the mean CD4 T cell count of the group had increased from 441 ± 21 cells/μl to 553 ± 43 cells/μl. Moreover, markers of immune activation had dropped back to normal levels while the mean viral load of the group had remained unchanged. Here we explore the long-term clinical, immunologic, and virologic impact of prednisolone on the chronic phase of HIV infection. METHODS: Retrospective study over 10 years starting between July 1992 and February 1993. A total of 44 patients with CD4 cells/μl ranging from 207 to 775 were treated with prednisolone, 0.5 mg/kg/d, over 6 months and 0.3 mg/kg/d thereafter. RESULTS: No clinical AIDS developed under prednisolone; side effects of the drug were mild. CD4 cells which increased from 421 cells/μl at entry to 625 cells/μl at day 15, slowly decreased to reach 426 cells/μl after two years; T cell apoptosis and activation markers dropped within 15 days to normal levels and reincreased slowly thereafter. Serum viral loads remained stable. The percentage of patients maintaining CD4 cells over entry was 43.2% at two years, 11.4% at five years and 4.6% at 10 years. Initial viral load was highly predictive of the rate of CD4 decrease under prednisolone. CONCLUSIONS: Prednisolone postponed CD4 cell decrease in a viral load dependent manner for a median of two years and for up to 10 years in a fraction of the patients with a low viral load. These findings might stimulate clinical trials as well as biological research on the role of antiapoptotic drugs in HIV infection

    Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: Sequential sampling and optimization on the potential of mean force surface

    Get PDF
    To accurately determine the reaction path and its energetics for enzymatic and solution-phase reactions, we present a sequential sampling and optimization approach that greatly enhances the efficiency of the ab initio quantum mechanics/molecular mechanics minimum free-energy path (QM/MM-MFEP) method. In the QM/MM-MFEP method, the thermodynamics of a complex reaction system is described by the potential of mean force (PMF) surface of the quantum mechanical (QM) subsystem with a small number of degrees of freedom, somewhat like describing a reaction process in the gas phase. The main computational cost of the QM/MM-MFEP method comes from the statistical sampling of conformations of the molecular mechanical (MM) subsystem required for the calculation of the QM PMF and its gradient. In our new sequential sampling and optimization approach, we aim to reduce the amount of MM sampling while still retaining the accuracy of the results by first carrying out MM phase-space sampling and then optimizing the QM subsystem in the fixed-size ensemble of MM conformations. The resulting QM optimized structures are then used to obtain more accurate sampling of the MM subsystem. This process of sequential MM sampling and QM optimization is iterated until convergence. The use of a fixed-size, finite MM conformational ensemble enables the precise evaluation of the QM potential of mean force and its gradient within the ensemble, thus circumventing the challenges associated with statistical averaging and significantly speeding up the convergence of the optimization process. To further improve the accuracy of the QM/MM-MFEP method, the reaction path potential method developed by Lu and Yang [Z. Lu and W. Yang, J. Chem. Phys. 121, 89 (2004)] is employed to describe the QM/MM electrostatic interactions in an approximate yet accurate way with a computational cost that is comparable to classical MM simulations. The new method was successfully applied to two example reaction processes, the classical SN 2 reaction of Cl- + CH3 Cl in solution and the second proton transfer step of the reaction catalyzed by the enzyme 4-oxalocrotonate tautomerase. The activation free energies calculated with this new sequential sampling and optimization approach to the QM/MM-MFEP method agree well with results from other simulation approaches such as the umbrella sampling technique with direct QM/MM dynamics sampling, demonstrating the accuracy of the iterative QM/MM-MFEP method. © 2008 American Institute of Physics.published_or_final_versio

    Visualised inspection system for monitoring environmental anomalies during daily operation and maintenance

    Get PDF
    PurposeVisual inspection and human judgement form the cornerstone of daily operations and maintenance (O&M) services activities carried out by facility managers nowadays. Recent advances in technologies such as building information modelling (BIM), distributed sensor networks, augmented reality (AR) technologies and digital twins present an immense opportunity to radically improve the way daily O&M is conducted. This paper aims to describe the development of an AR-supported automated environmental anomaly detection and fault isolation method to assist facility managers in addressing problems that affect building occupants’ thermal comfort.Design/methodology/approachThe developed system focusses on the detection of environmental anomalies related to the thermal comfort of occupants within a building. The performance of three anomaly detection algorithms in terms of their ability to detect indoor temperature anomalies is compared. Based on the fault tree analysis (FTA), a decision-making tree is developed to assist facility management (FM) professionals in identifying corresponding failed assets according to the detected anomalous symptoms. The AR system facilitates easy maintenance by highlighting the failed assets hidden behind walls/ceilings on site to the maintenance personnel. The system can thus provide enhanced support to facility managers in their daily O&M activities such as inspection, recording, communication and verification.FindingsTaking the indoor temperature inspection as an example, the case study demonstrates that the O&M management process can be improved using the proposed AR-enhanced inspection system. Comparative analysis of different anomaly detection algorithms reveals that the binary segmentation-based change point detection is effective and efficient in identifying temperature anomalies. The decision-making tree supported by FTA helps formalise the linkage between temperature issues and the corresponding failed assets. Finally, the AR-based model enhanced the maintenance process by visualising and highlighting the hidden failed assets to the maintenance personnel on site.Originality/valueThe originality lies in bringing together the advances in augmented reality, digital twins and data-driven decision-making to support the daily O&M management activities. In particular, the paper presents a novel binary segmentation-based change point detection for identifying temperature anomalous symptoms, a decision-making tree for matching the symptoms to the failed assets, and an AR system for visualising those assets with related information.EPSRC, Innovate U

    Mortalin-p53 interaction in cancer cells is stress dependent and constitutes a novel target for liver cancer therapy

    Get PDF
    Poster AbstractsThis journal suppl. entitled: The International Liver Congress™ 2011 Abstract Book 46 annual meeting of the European Association for the Study of the LiverBACKGROUND AND AIMS: The mortality rate of HCC is high due to tumor recurrence and lack of effective treatment. By proteomics analysis of matched tumor and non-tumor tissues, mortalin was identified as a marker for hepatocellular carcinoma (HCC) metastasis and recurrence, suggesting its tight link in HCC development and recurrence. The aim of this study is to examine the role of mortalin in hepatocarcinogenesis. METHODS: The mortalin expression ...postprin

    Does historical data still count? Exploring the applicability of smart building applications in the post-pandemic period

    Get PDF
    The emergence of COVID-19 pandemic is causing tremendous impact on our daily lives, including the way people interact with buildings. Leveraging the advances in machine learning and other supporting digital technologies, recent attempts have been sought to establish exciting smart building applications that facilitates better facility management and higher energy efficiency. However, relying on the historical data collected prior to the pandemic, the resulting smart building applications are not necessarily effective under the current ever-changing situation due to the drifts of data distribution. This paper investigates the bidirectional interaction between human and buildings that leads to dramatic change of building performance data distributions post-pandemic, and evaluates the applicability of typical facility management and energy management applications against these changes. According to the evaluation, this paper recommends three mitigation measures to rescue the applications and embedded machine learning algorithms from the data inconsistency issue in the post-pandemic era. Among these measures, incorporating occupancy and behavioural parameters as independent variables in machine learning algorithms is highlighted. Taking a Bayesian perspective, the value of data is exploited, historical or recent, pre- and post-pandemic, under a people-focused view
    corecore