
Self-triggeredMPCwithPerformanceGuarantee using

RelaxedDynamicProgramming ?

Liang Lu a, Jan M. Maciejowski b

aSchool of Electrical and Electronic Engineering, Nanyang Technological University, Singapore.

bDepartment of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K.

Abstract

This paper presents a self-triggered MPC controller design strategy for linear systems with state and input constraints. Based
on the so-called relaxed dynamic programming inequality, the synthesis procedure determines both the updated MPC control
action and the next triggering time. The resulting self-triggered MPC control law preserves stability and constraint satisfaction
and also satisfies a certain specified performance requirement without requiring stabilizing terminal constraints. A robust
self-triggered MPC scheme, based on tube-MPC idea, is also presented for linear systems with persistent bounded additive
disturbances. Simulation examples illustrate the effectiveness of our proposed self-triggered MPC scheme.

Key words: Self-triggered Control, Model Predictive Control, Relaxed Dynamic Programming, Tube-based MPC.

1 Introduction

Model predictive control (MPC) is a powerful con-
trol technique for constrained systems [11,36,37,44]. In
MPC, an open-loop optimal control problem is solved at
each sampling time after a measurement update. Clas-
sical MPC can be termed “time-driven” as the control
input profile is optimised repeatedly at a chosen fixed
interval; at each sampling time a sequence of control val-
ues is computed, but usually only the first component
is applied to the system, while the other components
are discarded. Though it was originally developed to
solve multivariable constrained control problems found
in refineries and chemical plants [43], its application
range has been significantly broadened to include the
fields of automotive powertrains [41], power grids [39],
and water distribution systems [16,32]. One of the po-
tential bottlenecks of MPC, especially for large-scale
systems, is its large computational requirement due to
the need to solve an optimization problem on-line at
each sampling time. In distributed MPC the computa-

? This paper was not presented at any IFAC meeting. This
work was initially carried out when the first author was a
Researcher at the Linköping University, Sweden and KAIST,
South Korea. Corresponding author Liang Lu. Tel. +86-
15524476228.

Email addresses: liangup@gmail.com (Liang Lu),
jmm@eng.cam.ac.uk (Jan M. Maciejowski).

tion is distributed over several controllers; in this case
the communication required between these controllers
at each sampling time can also be substantial, and can
limit the amount of distribution that is possible [13].
Even in non-distributed MPC (and other centralised
control schemes) the communication of many measure-
ments and many actuator signals at each sampling time
may pose a considerable burden.

Figure 1. Time-driven MPC vs. Event-driven MPC.

To overcome the above-mentioned limitations of clas-

Preprint submitted to Automatica August 14, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/237712902?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

sical time-driven MPC, so-called “event-driven” MPC
has been proposed and has gained a lot of attention in
recent years. In event-driven MPC, instead of equally-
spaced activation over time, the control input update is
performed only when it is necessary or something sig-
nificant happens (see Fig. 1), according to a trigger-
ing scheme designed together with the control compu-
tation. Event-driven MPC can take the form of “event-
triggered” or “self-triggered”. In event-triggered MPC, a
prescribed triggering condition, based on incoming mea-
surements, is constantly checked and if it is violated the
MPC update process is triggered. On the other hand,
in self-triggered MPC, at a triggering time both the
updated MPC control actions and the next triggering
time are determined. The key issue in choosing between
the event-triggered and self-triggered MPC implemen-
tations is whether the system states can be continuously
monitored [29]. If the system model has significant un-
certainties or frequent disturbances, the event-triggered
strategy may be more appropriate.

Most of the existing event- and self-triggered control
results are for continuous-time systems, and utilize
the input-to-state stability (ISS) property to derive
appropriate error thresholds for the triggering (see
[47,4,29,45], and the references therein). In [18], the
authors extended the continuous-time event-triggered
control strategy to discrete-time systems and applied
it to compute the inter-sample time needed for an un-
constrained MPC problem to guarantee a certain level
of performance by maintaining measured errors within
some bound set by the ISS conditions. Later in [19,20],
this idea of checking the ISS property with respect to
measured errors was extended to nonlinear discrete-time
distributed systems by utilizing a stabilizing MPC setup
with terminal cost and terminal constraints; the result-
ing event-triggered MPC scheme can achieve ultimate
boundedness of the closed-loop system. More specifi-
cally, in [19], the triggering condition was implemented
by viewing the interactions among the subsystems as
bounded disturbances, while in [20], these neighbouring
subsystems’ interactions were considered explicitly in
the local triggering conditions. All these results on the
event-triggered strategy need regular monitoring of the
states, and no performance guarantee is obtained. In the
case that regular monitoring is not feasible or desirable,
the self-triggered strategy is more appropriate.

The paper [30] presented a self-triggered unconstrained
MPC strategy for multiple-loop networked control sys-
tems by analysing a tradeoff cost function that depends
on the performance cost as well as the inter-sampling
cost to schedule the sensor sampling, so as to guaran-
tee collision-free transmissions. The paper [7] derived a
self-triggered MPC strategy for discrete-time linear sys-
tems with terminal cost and terminal constraints in the
MPC setup, which guarantees a certain sub-optimality
criterion and constraint satisfaction. In that paper the
control law remains constant during the non-triggering

interval, which often results in consecutive triggering up-
dates because keeping the control law constant can ex-
acerbate model mismatch. More recently, the paper [25]
derived a self-triggered MPC strategy with terminal cost
and terminal constraints, with ‘sparse’ control signals.
The idea is either to hold the control signal computed
at the triggering time for as long as possible, or to zero
the control actions after the triggering time, while still
guaranteeing stability and some performance objective.

By contrast, in this paper we make full use of the (non-
constant) ‘tail’ of the control sequence computed by
MPC at the triggering times, and we maintain stability
and performance requirements without terminal con-
straints or penalties. The key technical tool which en-
ables us to ensure asymptotic stability without terminal
constraints is the so-called relaxed dynamic program-
ming inequality (RDP) [26,27,34]. Earlier pioneering
works on the study of feasibility and stability for MPC
without terminal constraints can be found in [42,46].
Similar ideas have been applied with time-varying con-
trol horizons [22], for shortening the prediction horizon
[40] and for early termination of distributed MPC algo-
rithms [23,21] with suboptimality and stability guaran-
tees. However, to the authors’ knowledge, this is the first
paper which ensures feasibility, stability and guaranteed
performance for MPC without terminal constraints,
and exploits the relaxed dynamic programming idea, in
the context of event-driven MPC.

Recently, a class of robust self-triggered MPC schemes
was developed in combination with tube-based MPC
[5,12]. (See [44, Chapter 3] for an account of tube-based
MPC.) The same triggering condition was adopted in
[15] for stochastic self-triggered MPC and in [35] for
min-max robust self-triggered MPC formulation. How-
ever, the evaluation of the triggering condition in all
of these requires the solution of a number of quadratic
programs with complex time-varying constraint tight-
ening at every triggering time, the number required be-
ing equal to the number of time steps between trigger-
ing times. The time-varying constraint tightening signif-
icantly slows down the computation of each QP problem.
Thus, all of these methods are computationally very ex-
pensive at each triggering time, and incur the risk that
the next triggering time should occur before its compu-
tation is complete. Furthermore, since these schemes ap-
ply open-loop control between triggering times, the un-
certainty due to disturbances grows exponentially along
the prediction horizon, requiring more conservative and
more elaborate constraint tightening — typically reduc-
ing the domain of attraction as a result.

Inspired by the “assumed trajectory” idea in [17,9], in
this paper we also obtain a robust self-triggered MPC
scheme which can deal with bounded persistent additive
disturbances, by extending the RDP-based self-triggered
MPC scheme. We propose a novel closed-loop control
policy in between triggering times; we take the measure-

2

ment of the system state at the latest triggering time and
keep it constant as the “assumed trajectory” until the
next triggering time. We apply “tube-like” state feed-
back between this assumed trajectory (as the real tra-
jectory is not measured in between the triggering times)
and the nominal trajectory at each sampling time, which
does not involve any optimisation. This feedback reduces
the rate of growth of uncertainty between triggering
times, and the resulting deviation between the assumed
trajectory and the real one can be bounded. In addition,
in our proposed method only a single QP needs to be
solved in order to evaluate the next triggering time, and
we need less complex constraint tightening than occurs
in [5,12,15]. Furthermore, the constraint tightening com-
putation needs to be done only once, offline, rather than
to enforce the time-varying constriant tightening online.

The organization of the paper is as follows. In Section
2, we provide some definitions and preliminary results
that will be used in this paper and formulate the self-
triggered MPC problem that will be dealt with in this
paper. In Section 3, the RDP based approach is adopted
to prolong the inter-triggering times to a maximum ex-
tent in order to minimize the number of MPC updates.
A systematic self-triggering scheme is provided. In Sec-
tion 4, we extend the RDP based approach to linear sys-
tems with bounded disturbances. Illustrative examples
for both the deterministic and the robust cases are pre-
sented in Section 5, and some conclusions are given in
Section 6.

Notation: Let R, R+, Z and Z+ denote the set of real
numbers, non-negative real numbers, integers, and non-
negative integers, and let Z[a,b) and Z[a,b] denote the
sets {k ∈ Z | a ≤ k < b} and {k ∈ Z | a ≤ k ≤ b},
respectively. Throughout this paper, t denotes sampling
time, and k denotes the count of time-steps in prediction
horizon. Given two sets X , Y ⊆ Rn. The Minkowski set
addition is defined by X ⊕ Y := {x + y|x ∈ X , y ∈ Y}.
The Pontryagin set difference is defined by X 	 Y :=
{z|z⊕Y ⊆ X}. The multiplication of a matrix and a set
is defined by XY = {Xy|y ∈ Y}.

2 Problem Setup

Consider the linear system

x(t+ 1) = Ax(t) +Bu(t), x(0) = x̄, (1)

y(t) = Cx(t) +Du(t), (2)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rp are the
state, input and (generalized) output at time instant t,
respectively. The sets X ⊆ Rn and U ⊆ Rm represent the
sets of state and input constraints containing the origin
in their interiors. We assume that (A,B) is stabilizable,
the pair (A,C) is observable and matrixD is full column
rank. Note that y here contains the controlled variables,

not the measured variables (which are in x), so that this
full-rank assumption is not problematic.

2.1 Infinite-horizon Optimal Control

In order to synthesize an optimal control law, the fol-
lowing infinite-horizon optimal control problem is for-
mulated:

min
u,[uT(0),··· ,uT(∞)]T

J (∞)(x̄,u) ,
∞∑
t=0

‖y(t)‖22, (3)

s.t. x(t) ∈ X,
u(t) ∈ U,
x(0) = x̄,

x(t+ 1) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),

where ‖y(t)‖22 is the quadratic cost for t = 0, 1, 2, · · · ,∞.
J (∞)(x̄,u) is the infinite horizon cost function for some
starting state x̄ and control law u from time 0 to ∞.
Let the optimal control law be denoted by u∗ and the
corresponding optimal infinite horizon cost function by

V (∞)(x̄) , J (∞)(x̄,u∗).

V (∞)(x̄) is the so called “value function”. To compute
the value function, one has to solve the Bellman’s op-
timality equation, which is in general very difficult due
to the computational barrier known as the “curse of di-
mensionality”.

2.2 Finite-horizon MPC Optimization

In MPC, we take a finite horizon N ∈ Z+, instead of in-
finity horizon and solve the following optimization prob-
lem repetitively at each sampling time.

min
u,[uT0 ,··· ,u

T
N−1

]T
J (N)(x(t),u) ,

N−1∑
k=0

‖yk‖22, (4)

s.t. xk ∈ X, k = 1, . . . , N,

uk ∈ U, k = 0, 1, . . . , N − 1,

x0 = x(t),

xk+1 = Axk +Buk, k = 0, 1, . . . , N − 1,

yk = Cxk +Duk, k = 0, 1, . . . , N − 1.

The optimization problem (4) is strictly convex and has
a unique minimum.

At each sampling time, solving the above opti-
mization problem for a particular x0 leads to a
unique sequence of optimal control moves from

3

time t to time t + N − 1, given by U∗N (x(t)) =
[u∗0

T(x(t)), u∗1
T(x(t)), . . . , u∗N−1

T(x(t))]T.

The (finite-horizon) value function is

V (N)(x(t)) , J (N)(x(t), U∗N (x(t))),

as compared to the corresponding infinite horizon value
function denoted as

V (∞)(x(t)) , J (∞)(x(t), U∗∞(x(t))).

The open-loop optimal control solution is turned into a
feedback control strategy by applying the first control
move of the optimal control sequence U∗N (x(t)) to the
system and solving the same problem again with a feed-
back update of the state at next sample time. As the
reference is time varying, the MPC control law will be
represented by

u(t) = µ(x(t)) := u∗0(x(t)). (5)

Consequently, the closed-loop system becomes

x(t+ 1) = Ax(t) +Bµ(x(t)), (6)

yµ(t) = Cx(t) +Dµ(x(t)). (7)

2.3 Recursive Feasibility

As the system has constraints, this subsection is devoted
to characterize the region from which the receding hori-
zon optimal control problem is feasible, and if the hori-
zon length N is chosen long enough the evolution tra-
jectories will always remain in this feasible region under
the MPC control law (5).

First, we introduce some definitions and notations to
formalize recursive feasibility.

Definition 1 A control sequence u = (u(0), u(1), . . . , u(N−
1)) is said to be admissible for x(0) ∈ X, if Ax(t) +
Bu(t) ∈ X for (x(t), u(t)) ∈ X × U holds for all
t ∈ {0, 1, . . . , N − 1}. The set of all admissible control
sequences of length N is denoted by UN (x(0)).

The feasible region for horizon N is defined as

IN := {x ∈ X : UN (x) 6= ∅}.

The region I∞ is called viability kernel [10]. It character-
izes the set of the infinite horizon feasible initial condi-
tions of system (1) subject to input and state constraints.
From the definition, we can immediately get the follow-
ing properties:

1) I0 ⊇ I1 ⊇ · · · ⊇ I∞,

2) I∞ := ∩N∈Z+IN .

The sequence of feasible sets IN ’s becomes stationary,
if there exists N0 ∈ Z+, such that IN = IN0

holds for
all N ≥ N0.

Definition 2 A set P ⊆ Rn is called a controlled posi-
tively invariant (CPI) set or a viable set for system (1),
if P ⊆ X and for all x ∈ P, there is a u ∈ U, such that
Ax+Bu ∈ P holds.

I∞ is also called maximal positively invariant (PI) set,
which includes all the possible CPI set P, i.e. P ⊆ I∞.

Definition 3 A set P is called RH N-invariant or re-
cursively feasible with respect to a horizon N ∈ Z+ if
P is a CPI set for the closed-loop system (6) under the
MPC controller (5) with a receding horizon (RH) N , i.e.

x(0) ∈ P ⇒ x(t) ∈ P, ∀t ∈ Z+.

The following proposition is from [10], which shows for
sufficiently large horizon N , MPC controller will gener-
ate recursive feasibility on the whole viability kernel I∞.
This property is inferred from stationarity of the feasi-
ble sets IN ’s [28,31].

Proposition 1 If V (∞)(x(t)) < c holds for some c ∈
R+ and all x(t) ∈ I∞, the feasible sets IN ’s become sta-
tionary for some N0 ∈ Z+, i.e., IN0

= IN0+1 = IN0+2 =
· · · = I∞.

In order to characterize the feasible region from which
the constrained infinite horizon optimal control problem
has a finite solution, we make the following assumption.

Assumption 1 Throughout this paper, we assume the
optimal infinite horizon cost V (∞)(x(0)) is finite for all
x(0) ∈ I∞, i.e., supV (∞)(I∞) is finite.

Given a horizon length N and a positive scalar ν, in
order to determine a RH N-invariant set, we define the
sub-level SNν of finite horizon value function V N (x)

SNν = {x ∈ X : V N (x) ≤ ν}.

In our setting, the inequality V N (x) ≤ V (∞)(x) holds.
Hence, SNν contains S∞ν .

2.4 Relaxed Dynamic Programming

In this paper, we will use the relaxed dynamic program-
ming result in [34] to develop a triggering condition for

4

self-triggered MPC to ensure stability and to obtain a
performance guarantee in terms of the infinite horizon
quadratic cost.

The next proposition is a variant of the main proposi-
tion stated in [34,27] for approximating the Bellman’s
optimality equation based on the finite-horizon value
function V (N)(x(t)) defined in Section 2.2 and its corre-
sponding optimal control policy µ(x(t)).

Proposition 2 Let ν = V N (x(0)). Consider the system
(1)-(2) and the feedback control law µ : X 7→ U given as
(5) that satisfies the following inequality

V (N)(x(t)) ≥ V (N)(x(t+ 1)) + α‖yµ(t)‖22, (8)

for a given scalar α ∈ (0, 1] and all x(t) ∈ SNν . Then,

α

∞∑
t=0

‖yµ(t)‖22 ≤ V (∞)(x(0)), (9)

where x(t + 1) and yµ(t) are obtained by applying
µ(x(t)) to the closed-loop system, i.e., x(t + 1) =
Ax(t) +Bµ(x(t)) and yµ(t) = Cx(t) +Dµ(x(t)).

Proof. Let the feedback control law µ(x(t)) be com-
puted as (5). Summing (8) over time t = 0, . . . , T − 1
yields

α

T−1∑
t=0

‖yµ(t)‖22 ≤ V (N)(x(0))− V (N)(x(T)).

Since V (N)(x(T)) ≥ 0, as T →∞,

α

∞∑
t=0

‖yµ(t)‖22 ≤ V (N)(x(0)).

As there is no terminal cost in the cost function and as
V (N)(x(0)) : SNν → R+ is increasing as N increases, we
have V (N)(x(0)) ≤ V (∞)(x(0)). Thus,

α

∞∑
t=0

‖yµ(t)‖22 ≤ V (∞)(x(0)).

This completes the proof. 2

Remark 1 The inequality (8) is the so-called relaxed
dynamic programming (RDP) inequality. By Bellman’s
equation, the inequality in (8) becomes equality with α =
1 (optimal performance). In particular, inequality (8) im-
plies that V (N)(x) is a Lyapunov function on SNν for α >
0, which gives recursive feasibility and uniform asymp-
totic stability on SNν , i.e. SNν is RH N-invariant and con-
tractive under the MPC feedback controller µ(x(t)).

Remark 2 Inequality (9) gives a rigorous bound α ∈
(0, 1] on the sub-optimality of the closed-loop system with
respect to infinite-horizon performance. As N → ∞,
V (N)(x(t)) → V (∞)(x(t)) for all x(t) ∈ I∞, which fol-
lows from the stationarity of the feasible region IN . If
supV (∞)(I∞) is finite, then S∞ν contains I∞ for ν ≥
supV (∞)(I∞), hence SNν also contains I∞, which im-
plies that I∞ is contained in the stabilizable set. So with
Assumption 1, we can expect (8) to hold for all N suffi-
ciently large on the whole I∞.

Throughout this paper, we can reasonably make the fol-
lowing assumption.

Assumption 2 Given any initial conditions in I ⊆ I∞,
the control horizon N ≥ N∗ is known for a prescribed
α ∈ (0, 1] to satisfy the RDP inequality (8).

Results on quantitative estimates of N∗ and computa-
tion of α in the RDP inequality for stabilizing horizons
N for various systems can be found in the references
[1,2,3,6,48].

While under reasonable condition on the system (1), we
can ensure that N∗ exists, it may be difficult to com-
pute it a priori. Therefore, our triggering mechanism will
detect if N was chosen too small, such that it can be
adapted, cf. Remark 7.

2.5 Self-triggered MPC: Sparse and Non-sparse

The main difference between time-driven and event-
driven MPC is that, in event-driven MPC, the control
updates are performed upon significant occurrences
instead of at uniformly spaced sampling times. The fol-
lowing aperiodic self-triggered receding horizon mech-
anism is suggested with the purpose of alleviating the
computational and measurement efforts associated with
control computation and state monitoring.

At a sampling time t, we perform the MPC prediction
process, and get a sequence of optimal control moves
u∗0(x(t)), u∗1(x(t)), . . . , u∗N−1(x(t)). In this paper, instead
of only implementing the first control move and throw-
ing away the rest, we want to use up the obtained input
sequence as much as possible (as illustrated in Fig. 2
(a)). For that, we must determine how long we can follow
the calculated open-loop input trajectory while stabil-
ity can be maintained, constraints satisfied, and certain
prescribed performance levels guaranteed.

Define the triggering times {tl | l ∈ Z+}, which satisfy
tl+1 > tl for all l ∈ Z+ and tl+1 − tl < N . In between
the interval [tl, tl+1),

u(t) = µ̃(t, x(tl)) := u∗(t−tl)(x(tl)), t ∈ Z[tl,tl+1).

(10)

5

0

u0

u1 u2 u3 u4 u5

1 2 3 4 5 k

u

0

u0

1 2 3 4 5 k

u

0

u0

1 2 3 4 5 k

u

(a) (b) (c)

Figure 2. Self-triggering strategies (Non-sparse: (a), sparse:
(b) & (c)).

Remark 3 As u∗0(x(tl)), u
∗
1(x(tl)), . . . , u

∗
N−1(x(tl)) is a

feasible open-loop input trajectory from time tl to tl +
N −1 and we follow this trajectory until the next trigger-
ing time tl+1 in self-triggered MPC, the input constraint
u(t) ∈ U for t ∈ Z[tl,tl+1) is automatically satisfied.

The self-triggered MPC implementation scheme in (10)
is to follow the open-loop MPC input trajectory un-
til the next triggering time. We recommend this imple-
mentation, because it can incorporate more information
from the MPC control sequence we compute. However,
in some applications, in order to shape sparsity in the
control actuators, the synthesis strategies either keep the
control signal constant between triggering times or im-
plement only the first control move with no actuation
until the next triggering time as plotted in Fig. 2 (b) and
Fig. 2 (c). In these situations, we replace the implemen-
tation scheme (10) with one of the following two sparse
implementations:

(i) To hold:

u(t) = µ̄(t, x(tl)) := u∗0(x(tl)), t ∈ Z[tl,tl+1),
(11)

(ii) To zero:

u(t) = µ̊(t, x(tl)) :=

{
u∗0(x(tl)), t = tl,

0, t ∈ Z[tl+1,tl+1),

(12)

where u∗0(x(tl)) is obtained from solving the MPC prob-
lem (4) by setting x0 = x(tl).

Remark 4 Note that in these sparse implementations,
in general, only one control move information in the com-
puted MPC control sequence is used which can introduce
more model mismatch, more trade off in the performance
and consecutive triggerings are expected. We will inves-
tigate these issues in Section 5.

The problem we want to solve in this paper is formally
stated as follows:

Problem 1: At a time instant tl, compute an optimal
receding horizon control sequence according to (4) as
U∗N (x(tl)), and given a performance index 0 < α < 1,

decide the next triggering time tl+1 such that tl+1 is as
large as possible while the closed-loop system of (1) and
(10) has the following design properties:

(i) The input and state constraints are satisfied for all
x ∈ I.

(ii) The system (1) and (10) is (uniformly) asymptoti-
cally stable in I.

(iii) The system (1), (2) and (10) satisfies the perfor-
mance requirement

∞∑
t=0

‖yµ̃(t)‖22 ≤ α−1V (∞)(x(0)) (13)

for all closed-loop trajectories of (1) and (10) with
x(0) = x̄ ∈ I.

As the control strategy (10) can be replaced by (11)
or (12) for the closed-loop trajectories, we use ycl(t),
instead of yµ̃(t) in the rest of this paper.

3 RDP-Based Approach

In this section, we will revise the relaxed dynamic pro-
gramming inequality in Proposition 2 so that it can be
used within the self-triggered MPC scheme.

At a triggered time instant tl, self-triggered MPC has
to decide both the control law and the next triggering
time tl+1 such that tl+1(< tl +N) is as large as possible
while satisfying the properties of (i)-(iii) that are stated
in Problem 1. Calculation of the next triggering time will
be based on the RDP inequality for finite-horizon value
function V (N)(x(tl)).

In the self-triggered MPC setting, multiple control
moves calculated at time tl may be implemented before
the next control calculation at time tl+1 is performed.
So we amend the RDP inequality as follows:

V (N)(x(tl))≥V (N)(x(tl+1))+α

tl+1−1∑
t=tl

‖ycl(t)‖22, (14)

where
∑tl+1−1
t=tl

‖ycl(t)‖22 represents the sum of the run-
ning costs at times tl, tl+1, . . . , tl+1−1 with the control
u(t) applied as in (10). As the value of V (N)(x(tl+1)) for
the next triggering time is not available at tl, we will
use an upper bound for it. Furthermore, we will also in-
troduce an extra slack variable which collects the slacks
due to the introduction of these upper bounds and the
slacks inherent from the RDP inequalities before tl, in
order to reduce the conservativeness associated with the
using of upper bound. The main theorem of this pa-
per is stated as follows, which proves after all the above
mentioned modifications on the RDP inequality, a cer-
tain bound of performance, thus asymptotic stability are

6

still guaranteed. Note that if we set α close to 1, then
we obtain a time-driven optimal MPC trajectory, i.e. we
compute the optimal MPC controller at each sampling
time. However, in self-triggered MPC, we want to relax
the performance requirements in order to get the desired
properties, like less MPC updates and sparse control im-
plementations, etc.. So we will set α ∈ (0, 1) in the fol-
lowing, which means that we use suboptimal MPC.

Theorem 1 Let ν = V N (x(0)). If an upper bound
V̄ (N)(x(t)) can be found for t ∈ {tl | l ∈ Z+} such that

V̄ (N)(x(t)) ≥ V (N)(x(t)) (15)

and

V (N)(x(tl))−V̄ (N)(x(tl+1))≥e(tl) + α

tl+1−1∑
t=tl

‖ycl(t)‖22,(16)

are satisfied for a given scalar α ∈ (0, 1) and all x(t) ∈
SNν , where the sequence {e(tl)} is

e(tl) = e(tl−1) + α

tl−1∑
t=tl−1

‖ycl(t)‖22 + V̄ (N)(x(tl))

−V̄ (N)(x(tl−1)) (17)

for all l ≥ 2 and

e(t1) = α

t1−1∑
t=t0

‖ycl(t)‖22 + V̄ (N)(x(t1))− V (N)(x(t0)),

and e(t0) = 0, then,

α

∞∑
t=t0

‖ycl(t)‖22 ≤ V (∞)(x(t0)). (18)

Furthermore, if V∞(x(t0)) ≤ V̄ <∞, then

lim
t→∞

yµ̃(t) = 0, (19)

i.e., limt→∞ x(t) = 0.

Proof. At time tT ∈ {tl | l ∈ Z+}, we proceed to derive

e(tT) by induction from (17) as

e(tT) = e(tT−1) + α

tT−1∑
t=tT−1

‖ycl(t)‖22 + V̄ (N)(x(tT))

− V̄ (N)(x(tT−1)) = · · · = e(t1) + α

tT−1∑
t=t1

‖ycl(t)‖22

+ V̄ (N)(x(tT))− V̄ (N)(x(t1))

= α

tT−1∑
t=t0

‖ycl(t)‖22 + V̄ (N)(x(tT))− V (N)(x(t0)),

which implies

α

tT−1∑
t=t0

‖ycl(t)‖22 = e(tT)− V̄ (N)(x(tT)) + V (N)(x(t0)).

(20)

From (16) and because α
∑tl+1−1
t=tl

‖ycl(t)‖22 ≥ 0, we have

e(tT) ≤ V (N)(x(tT))− V̄ (N)(x(tT+1)).

Insert this into (20) gives

α

tT−1∑
t=t0

‖ycl(t)‖22 ≤ V (N)(x(t0))− V̄ (N)(x(tT))

+ V (N)(x(tT))− V̄ (N)(x(tT+1))

Because

V (N)(x(tT))− V̄ (N)(x(tT)) ≤ 0,

we get

α

tT−1∑
t=t0

‖ycl(t)‖22 ≤ V (N)(x(t0))− V̄ (N)(x(tT+1))

≤ V (N)(x(t0))− V (N)(x(tT+1)) (21)

≤ V (N)(x(t0)) ≤ V (∞)(x(t0)).

As tT →∞, we get (18). Furthermore, given the bound-
edness of V (∞)(x(t0)), and the positive definiteness of
the term ‖ycl(t)‖22, we get immediately limt→∞ ycl(t) =
0, i.e. limt→∞ x(t) = 0.

This completes the proof. 2

Remark 5 The slack variable e(tl) in the above theorem
is composed of two parts: The first part comes from the
slack of the RDP inequality (16) in the previous triggering
time, which is

e(tl−1) + α

tl−1∑
t=tl−1

‖ycl(t)‖22 + V̄ (N)(x(tl))− V (N)(x(tl−1)).

7

The second is due to the conservativeness in the over-
bound estimate of the value function in the RDP inequal-
ity (16) two triggered steps back:

V (N)(x(tl−1))− V̄ (N)(x(tl−1)).

Remark 6 From (15) and (16), the two parts in Remark
5 are all “≤ 0”, thus we have e(tl) ≤ 0, which reduces the
conservativeness associated with using the upper bound
in the inequality (16). Due to the introduction of the slack
term e(tT), the self-triggering mechanism will accept a
longer period in between triggering times tl and tl+1 even
if the predictive decay of V (N)(x(tl)) − V̄ (N)(x(tl+1))
is not sufficiently large provided the Lyapunov function
V (N)(x(t)) already accumulated enough decay in previ-
ous time steps. At the same time, from (21), we always
get sufficient decrease of V (N)(x(tT+1)) with respect to
V (N)(x(t0)), i.e. x(tT+1) ∈ SNν .

3.1 RDP-based Triggering Scheme

At an MPC update time tl ∈ Z+ with l ∈ Z+, we com-
pute the MPC control update according to (4), and im-
plement the control strategy selected from (10), (11) or
(12). The next MPC update time tl+1 can be calculated
by

tl+1 = tl +Ntl(x(tl)), (22)

where the inter-triggering interval Ntl(x(tl)) is given by

Ntl(x(tl)) ,max{Ntl ∈ Z[1,N−1]} (23)

s.t. V (N)(x(tl))− V̄ (N)(x(tl +Ntl))

≥ e(tl) + α

tl+Ntl
−1∑

t=tl

‖ycl(t)‖22

 . (24)

In order to calculate the upper bound V̄ (N)(x(tl+Ntl)),
we apply a “shifted” input sequence ŪN (x(tl +Ntl)) =
[u∗Ntl

T(x(tl)), . . . , u
∗
N−1

T(x(tl)), 0m×Ntl
]T. The reason

for adding zeros in the tails of the “shifted” input se-
quence is that there’s no available control sequence be-
yond u∗N−1

T(x(tl)). It is quite realistic to understand
when no control sequence is available, we do nothing.
Actually, this zero input signal, also gives a sign that we
need to trigger the system to update the MPC control se-
quence in order to guarantee stability and performance.

Hence, the upper bound

V̄ (N)(x(tl +Ntl)) , J (N)(x(tl +Ntl), ŪN (x(t))). (25)

From Remark 6, we can conclude that if the RDP check-
ing condition (24) is satisfied, x(tl + Ntl) ∈ SNν . Thus,

state constraints are always satisfied by our RDP-based
self-triggered MPC scheme and SNν is a RH N-invariant
set of our self-triggering MPC scheme.

Note that the solution of problem (23) is very cheap. We
can simply increment Ntl and check whether the RDP
condition (24) is satisfied or not by forward simulation.

3.2 A Posteriori Analysis

(N)

t

t1 t2 t3

1 2 3 4 5 6 7 8 9 10 110

V (x(t))

Figure 3. Illustration of RDP-based Triggering Scheme.

The RDP-based self-triggered scheme proposed in Sec-
tion 3.1 guarantees the satisfaction of the RDP inequal-
ity (16). Thus if the inequality (24) is satisfied by imple-
menting the “shifted” input sequence ŪN (x(tl + Ntl)),
the system is invariant during the time interval [tl, tl +
Ntl(x(tl))], and if the inequality (24) is not satisfied at
tl+Ntl(x(tl))+1, we set tl+1 = tl+Ntl(x(tl)) and solve
the MPC optimization problem for t = tl+1. The idea of
the scheme is illustrated in Fig. 3.

In the worst case, when Ntl(x(tl)) = 1, we set tl+1 =
tl + 1 and from Assumption 2, we know that if we up-
date MPC at tl+1 = tl+1, the optimal value for tl+1 will
satisfy (8), thus (14), and from Remark 6, satisfy (16).
In summary, Assumption 2 and our RDP self-triggering
scheme in Section 3.1 guarantee that (16) is always sat-
isfied.

Remark 7 (On adjustment of the horizon length N in
real time) If N was chosen too small to satisfy Assump-
tion 2, the triggering mechanism will realize this, because
optimization problem (23) will not have a feasible solu-
tion. So we can increaseN in order to make problem (23)
feasible for the given α.

An illustration is shown in Section 5 (Fig. 8). But in
this paper we assume that N is chosen large enough and
remains fixed. A full treatment of the case when N is
allowed to vary deserves separate attention in another
paper.

8

4 Extension to Linear Systems with Bounded
Disturbances

In this section, we consider an extension of the RDP-
based design to the case of linear uncertain systems de-
fined by

xR(t+ 1) = AxR(t) +BuR(t) + w(t), (26)

yR(t) = CxR(t) +DuR(t), (27)

where xR(t) ∈ Rn is the state of the real system (which
can be measured) and w ∈ W is an unmeasurable but
bounded disturbance. We call (1) the ‘nominal dynam-
ics’ of system (26).

Our approach is based on the tube-based MPC ap-
proach, as proposed in [44], since optimizing over all
possible feedback policies is not tractable in general. In
the standard tube-based MPC, instead of solving prob-
lem (4), we solve the following optimization problem
with tightened constraints

min
u,[uT0 ,··· ,u

T
N−1

]T
J (N)(x(t),u) ,

N−1∑
k=0

‖yk‖22, (28)

s.t. xk ∈ X	 E , k = 1, . . . , N,

uk ∈ U	KE , k = 0, 1, . . . , N − 1,

x0 = x(t),

xk+1 = Axk +Buk, k = 0, 1, . . . , N − 1,

yk = Cxk +Duk, k = 0, 1, . . . , N − 1.

where E ⊆ X is a bounded set that will be specified.

A ‘tube-based’ feedback policy is applied to the real sys-
tem, of the form

uR(t) = K(xR(t)− x(t)) + µ(x(t)) (29)

where x(t) is the nominal state and K ∈ Rm×n is such
that AK := A+BK is strongly stable, i.e. all the eigen-
values of AK are contained in the interior of the unit
disc. If we define δ := xR − x, the deviation between
the actual state xR and the nominal state x, then the
dynamic of this deviation state is

δ(t+ 1) = AKδ(t) + w(t). (30)

Definition 4 A set E ⊆ Rn is called an robustly pos-
itively invariant (RPI) set for the discrete-time system
x(t+1) = Φ(x(t), w(t)) with disturbance set W, if E ⊆ X
and for all x ∈ E and allw ∈W, it holds that Φ(x,w) ∈ E
holds.

Since AK is stable and w is bounded, there exists a RPI
set E for the system (30) satisfying [38]

AKE ⊕W ⊆ E . (31)

However, the policy (29) needs real-time measurements
of xR, which we only have at triggering times tl, l ∈
Z+. We therefore modify the scheme outlined above, and
propose our robust tube-based self-triggered MPC in the
next subsection.

4.1 RDP-based Robust Triggering Scheme

In the robust self-triggered MPC setting, instead of re-
peatedly computing the MPC update (28) at each sam-
pling time, in this subsection we aim to adopt the same
RDP condition for the nominal dynamics as in Section
3.1 to determine the time to update the MPC solution.
As discussed in Remark 4, the sparse implementation
will introduce more model mismatch (cf. Fig. 9 to Fig.
11). In this section, we utilize the non-sparse implemen-
tation strategy for the nominal dynamics.

At a triggering time tl ∈ Z+ with l ∈ Z+, we
solve the MPC optimization problem (28) and get
a sequence of nominal control inputs U∗N (x(tl)) =
[u∗0

T(x(tl)), u
∗
1
T(x(tl)), . . . , u

∗
N−1

T(x(tl))]
T for the nom-

inal dynamics (1)-(2) and apply control according to
((10)) before the next sampling instant. The shift se-
quence of this solution will be used to compute the next
triggering time tl+1 by

tl+1 = tl +Ntl(x(tl)), (32)

where

Ntl(x(tl)) ,max{Ntl ∈ Z[1,N−1]} (33)

s.t. (i) V (N)(x(tl))− V̄ (N)(x(tl +Ntl))

≥ e(tl) + α

tl+Ntl
−1∑

t=tl

‖yµ̃(t)‖22

 , (34)

(ii) xR(tl)− x(tl +Ntl) ∈ ∆E , (35)

where ∆E is a bounded set containing 0. An algorithm
for finding suitable E and ∆E is presented as Algorithm
1 (cf. Section 4.3). Compare the condition (33) with (23)
the only difference is that we add a new condition (ii)
in (35). The reason for adding this condition will be
explained in the next subsection.

4.2 Robust Control Policy

For tl < t < tl+1, we do not have measurements of xR.
So we redefine the control policy as follows

uR(t) = K(xR(tl)− x(t)) + µ̃(t, x(tl))

:= K(xR(tl)− x(t)) + u∗t−tl(x(tl)), t ∈ Z[tl,tl+Ntl
)

(36)

9

The differences between control policies (29) and (36)
are: First, in the correction term, we replace xR(t) with
xR(tl). Second, we replace µ(x(t)) by µ̃(t, x(tl)).

At time instant tl, we define the updates of xR, x and
δ before tl+1 as shown at the top of the next page. At a
time instant tl +M , M ∈ [1,Ntl(x(tl))], we have

δ(tl +M) = AKδ(tl +M − 1) + d(tl +M − 1), (37)

where d(tl +M − 1) = BK(xR(tl)− xR(tl +M − 1)) +
w(tl +M − 1). As AK is strongly stable and w(tl +M −
1) ∈ W is bounded, if we can guarantee BK(xR(tl) −
xR(tl + M − 1)) ⊕W ∈ F , where 0 ∈ F is a bounded
set, i.e. d ∈ F , then we can compute an invariant set E
for the system (37) under policy (36) satisfying

AKE ⊕ F ⊆ E . (38)

Given E , a candidate RPI set for δ, suppose that we can
find a set ∆E such that

xR(tl)− x(tl +M − 1) ∈ ∆E (39)

and that

AKE ⊕BK(∆E ⊕ E)⊕W ⊆ E , (40)

where BK(∆E ⊕ E)⊕W ⊆ F .

Then we have that

xR(tl)− xR(tl +M − 1) = [xR(tl)− x(tl +M − 1)]+

[x(tl +M − 1)− xR(tl +M − 1)] ∈ ∆E ⊕ E (41)

and hence, from (37), if δ(tl +M − 1) ∈ E , then

δ(tl +M) ∈ AKE ⊕BK(∆E ⊕ E)⊕W ⊆ E (42)

so that E is indeed an RPI set for (37). Note that 0 ∈ E .

So we need to check condition (24) and (39) together for
Ntl ∈ Z[1,N−1]. If these hold then conditions (i) and (ii)
in (33) hold.

Theorem 2 Consider the closed-loop system (26)-(27)
and (36) under RDP-based triggering scheme as in (32)
with the MPC control update at the triggering time ac-
cording to (28). Let ν = V N (x(0)). Then the trajectory
xR(t) starting from any initial condition xR(0) ∈ SNν ,
converges asymptotically to the set E.

Proof. Note that the system dynamics in the optimiza-
tion problems (4) and (28) are the same. From (40), we
have

xR(tl + k) ∈ x(tl + k)⊕ E (43)

for k = 1, . . . ,Ntl(x(tl)) and l ∈ Z+, then we can con-
clude xR(tl + k) ∈ SNν ⊂ X if x(tl) ∈ SNν 	 E by
(28). From (32), xR(tl+1) = xR(tl + Ntl(x(tl)), thus
xR(tl+1) ∈ x(tl+1)⊕E ∈ SNν ⊂ X. This proves the invari-
ance at the sampling instants t ∈ [tl, tl+1] in between the
triggering times. By induction, if x(0) = x(t0) ∈ SNν 	E ,

xR(t) ∈ x(t)⊕ E ∈ SNν , (44)

for all t ∈
⋃
l∈Z+

[tl, tl+1]. As the RDP condition (34)

(which is the same as (16)) is satisfied, from Theorem
1, we have limt→∞ x(t) = 0 for all x(t) ∈ SNν 	 E , i.e.
SNν 	E is forward invariant for x(t). Furthermore, from
(44), xR(t) converges asymptotically to the set E . 2

4.3 Computation of sets

In order to compute the RPI set, we first introduce the
following definitions from [11] and we rewrite them a bit
according to [33].

Definition 5 [11, Definition 11.12] For the discrete-
time system x(t+ 1) = Φ(x(t), w(t)), we denote the one-
step controllable set to the set E with disturbance set W
as

Pre(E) = {x | Φ(x(t), w(t)) ∈ E ,∀w ∈W}. (45)

Definition 6 [11, Definition 11.14] For the discrete-
time system x(t+ 1) = Φ(x(t), w(t)), we denote the one-
step reachable set from the set E with disturbance set W
as

Reach(E) = {Φ(x(t), w(t)) | ∀x ∈ E ,∀w ∈W}. (46)

With the above definitions, for system (37), one-step
controllable set to E can be computed by

Pre(E) = ((E 	W)⊕ (−BK(∆E ⊕ E))) ◦AK . (47)

Here, P ◦ A with a set P and a matrix A denotes the
inverse mapping of P under linear map A, i.e. P ◦ A =
{x | Ax ∈ P} [33].

The computation of sets E and ∆E is presented in Algo-
rithm 1.

Remark 8 We notice that algorithms in [8, Algorithm
26.2] and [9, Algorithm 1] are wrong in that they compute
the one-step reachable set (ReachSet) which, for system
(37), is

Reach(E) := E+ = AKE ⊕BK(∆E ⊕ E)⊕W,

instead of one-step controllable set (PreSet) in Step 3, the
convergence of our Algorithm 1 is achieved by iterations
Enext = Pre(E) ∩ E.

10

xR(tl + 1) : = AxR(tl) +BK(xR(tl)− x(tl)) +Bu∗0(x(tl)) + w(tl),

x(tl + 1) : = Ax(tl) +Bu∗0(x(tl)),

δ(tl + 1) = AKδ(tl) + w(tl),

xR(tl + 2) : = AxR(tl + 1) +BK(xR(tl)− x(tl + 1)) +Bu∗1(x(tl)) + w(tl + 1),

x(tl + 2) : = Ax(tl + 1) +Bu∗1(x(tl)),

δ(tl + 2) = AKδ(tl + 1) +BK(xR(tl)− xR(tl + 1)) + w(tl + 1),

...

xR(tl +M) : = AxR(tl +M − 1) +BK(xR(tl)− x(tl +M − 1)) +Bu∗M−1(x(tl)) + w(tl +M − 1),

x(tl +M) : = Ax(tl +M − 1) +Bu∗M−1(x(tl)),

δ(tl +M) = AKδ(tl +M − 1) +BK(xR(tl)− xR(tl +M − 1)) + w(tl +M − 1).

Algorithm 1 Computation of sets

1: Choose an initial (rough) hyper-cube ∆E and a constant
γ ∈ (0, 1).

2: Initialize, E = BK∆E ⊕W.
3: Compute Pre(E) as in (47).
4: Set Enext = Pre(E) ∩ E .
5: IF Enext == E , then GOTO Step 6). Otherwise, set
E := Enext and GOTO Step 4).

6: IF E ⊂ X, then STOP. Otherwise set ∆E = γ∆E , and
GOTO Step 2).

Remark 9 (On initialization of ∆E) ∆E in Step 1 of
Algorithm 1 should be chosen such that there exists a set E
which satisfies the invariance condition (40). From (39),
∆E can be viewed as a bounded “tube” between xR(tl) and
the predicted nominal state trajectory x(tl + M − 1). If
∆E is chosen too large, the prediction error is large, thus
it is difficult to satisfy (40). So ∆E should be chosen to
be sufficiently small to make the algorithm converge and
get an invariant set E. One reasonable option for ∆E is
to choose it as a hyper-cube whose magnitude is the same
as the size of the set W, since w determines the difference
between the real state trajectory xR and the nominal state
trajectory x.

5 Illustrative Example

Consider system (1) with three subsystems and each
subsystem has five states and one input [24].

x=

x1

x2
...

x15

 , u =

u1

u2

u3

 , A =

A1 0 0

0 A2 0

0 0 A3

 ,

B =

B11 0 B13

B21 B22 B23

0 B32 B33

 ,

where

A1 =

0.2647 0.2367 0.0015 0.1930 0.0565

0.0540 0.4256 0.1543 0.2090 0.0790

0.1006 0.2433 0.4554 0.1450 0.1478

0.0844 0.1107 0.0589 0.4532 0.2098

0.0581 0.2377 0.2358 0.0832 0.3263

,

A2 =

0.4552 0.1087 0.0984 0.0699 0.1265

0.0266 0.3975 0.1085 0.1573 0.1319

0.2077 0.1772 0.4946 0.1488 0.0228

0.2127 0.1877 0.1449 0.4964 0.2287

0.0896 0.1916 0.2148 0.0217 0.4764

,

A3 =

0.4547 0.0949 0.1016 0.1821 0.1000

0.2497 0.4990 0.1598 0.1224 0.2509

0.0402 0.2458 0.5019 0.1616 0.1017

0.0599 0.1627 0.1415 0.4773 0.1666

0.1775 0.2175 0.2360 0.0502 0.4807

,

11

and

B11 =

0

0

0

0

0.4026

, B13 =

0

0

0

0

0.8272

,

B21 =

0

0

0

0

0.4758

, B22 =

0

0

0

0

0.4390

, B23 =

0

0

0

0

0.6198

,

B32 =

0

0

0

0

0.3039

, B33 =

0

0

0

0

0.9956

.

As the problem is a regulation problem, the regulated

output is chosen to be yk =

(
I15

0

)
xk+

(
0

I3

)
uk. Both

the state and input constraints are set to require that
their trajectories lie within the range [−2, 2]. The control
horizon is chosen as N = 7 and the performance degra-
dation parameter α = 0.9. If the system’s state reaches
a small neighborhood of the origin, the simulation is ter-
minated. First, we implement the non-sparse implemen-
tation strategy. The simulation results are presented in
Fig. 4. The circle trajectories represent the simulation re-
sults for the classical time-driven MPC scheme, whereas
the star trajectories represent the simulation results for
the self-triggered MPC scheme proposed in this paper.
All the computations and simulations are performed in
MATLAB version R2016b on an Intel 2.8GHz Centrino
laptop. The total computationtime for the classical MPC
scheme is 35.8625 seconds, while the computation time
for the self-triggered MPC scheme that presented in this
paper is only 7.3075 seconds.

From Fig. 4, we can see that, if we do not add the self-
triggered mechanism to the MPC algorithm, it takes 43
MPC updates for the system’s state trajectory to evolve
to the origin as shown in the 3rd subplot of Fig. 4. If
we embed the proposed triggering scheme in the MPC
algorithm, it only needs 9 MPC updates to achieve the
convergence to the origin as shown in the 4th subplot
of Fig. 4. Hence, the proposed strategy can significantly
reduce the MPC update times to achieve regulation. The
triggering instants are recorded in Fig. 5.

Effects of e(tl):

In order to show the effects of the slack e(tl) in reducing
the conservatism in (16). We remove the e(tl) term in
(24) of our triggering scheme. The simulation results are
shown in Fig. 6 for α = 0.8, 0.7, and 0.6. For α = 0.8, if
there’s no e(tl) term presents in (24), we need 43 updates.
For α = 0.7, we need 38 updates. For α = 0.6, we need
11 updates. However, if the e(tl) term presents in (24),
from Fig. 5, we only need 9 updates for α = 0.9. These
simulations verify that the slack e(tl) has significant role
in reducing the conservatism as remarked in Remark 6.

Online Adjustment of Horizon N (Remark 7):

First, in Fig. 7, we show that when N = 2 is too small,
the trajectories do not converge to the origin as required
by the control objective. Then we introduce the online
adjustment of horizon N mechanism as in Remark 7.
Fig. 8 shows the horizon increases from N = 3 to 8 and
the stability and overall performance are guaranteed.

Sparse Implementation:

For the same settings as described above, we next imple-
ment the sparse implementation scheme and the simula-
tion result is presented in Fig. 9. As discussed in the pa-
per, keep the control signal constant between triggering
time can introduce more model mismatch. If we restrict
the performance requirement to α = 0.9, it is almost
like the result of time-driven MPC. So next we lower the
performance bound α to 0.8. Now we can achieve the
sparse character as shown in Fig. 10, and the computa-
tion time is 15.5897 seconds. It needs 15 updates as il-
lustrated in Fig. 11 while for non-sparse implementation
in Fig. 5, there are only 9 triggering instants. Hence, the
non-sparse strategy can significantly reduce the MPC
update times to achieve regulation.

Tube-based Robust Implemetation:

The final simulation is for the robust case presented
in Section 4. We only implement the non-sparse imple-
mentation strategy. The disturbance is added to system
(26) as w(t) = φw(t − 1) + ξ(t), where ξ(t) is gener-
ated from normal distribution with standard deviation
σ = 0.1× I15×1 and φ = 0.7× I15×1 is the autocorrela-
tion factor. W = {w|‖w‖∞ ≤ 0.05}. The control horizon
is chosen as N = 7 and the performance degradation pa-
rameter α = 0.9. We initialize ∆E as a hyper-cube whose
lower bound and upper bound are the same as the set
W and choose γ = 0.7 for Algorithm 1. The simulation
result is shown in Fig. 12 and Fig. 13. The computa-
tion time is 9.3282 seconds and it takes 10 updates in 50
sampling instants, which shows the effectiveness of our
proposed policy (36) for robust self-triggered MPC.

12

0 5 10 15 20 25 30 35 40 45 50
−1.5

−1

−0.5

0

0.5

1

1.5

2
States (Nontriggered o)

Time (s)

x

0 5 10 15 20 25 30 35 40 45 50
−1.5

−1

−0.5

0

0.5

1

1.5

2
States (Self−triggered *)

0 5 10 15 20 25 30 35 40 45 50
−0.8

−0.6

−0.4

−0.2

0

0.2
Inputs (Nontriggered o)

Time (s)

u

0 5 10 15 20 25 30 35 40 45 50
−0.8

−0.6

−0.4

−0.2

0

0.2
Inputs (Self−triggered *)

Figure 4. State and input trajectories with α = 0.9. Circles
for the classical MPC and stars for the self-triggered MPC.

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

Time (s)

E
v
e
n
ts

Figure 5. Event triggering instants. The triggering instants
are marked with the circles with the value 1.

6 Conclusions

This paper proposed a self-triggered MPC synthesis pro-
cedure for (disturbed) linear systems subject to state
and input constraints based on the relaxed dynamic pro-
gramming inequality. The interval between control input
updates is maximized such that the overall closed-loop
system maintains asymptotic stability, satisfies given
constraints, and meets a certain prescribed performance
level. The illustrative examples showed that the number
of control updates in the self-triggered MPC can be sig-
nificantly reduced compared to the classic time-driven
MPC while the system’s state trajectory still reaches

0 5 10 15 20 25 30 35 40 45 50

Time (s)

-1

0

1

2

x
 (

=
0

.8
)

State trajectories without slack e(t
l
) (Self-triggered *)

0 5 10 15 20 25 30 35 40 45 50

Time (s)

-1

0

1

2

x
 (

\a
p

h
a

=
0

.7
)

0 5 10 15 20 25 30 35 40 45 50

Time (s)

-1

0

1

2

x
 (

a
lp

h
a

=
0

.6
)

0 5 10 15 20 25 30 35 40 45 50

Time (s)

-0.8

-0.6

-0.4

-0.2

0

0.2

u
 (

=
0

.8
)

Inputs trajectories without slack e(t
l
) (Self-triggered *)

0 5 10 15 20 25 30 35 40 45 50

Time (s)

-0.8

-0.6

-0.4

-0.2

0

0.2

u
 (

=
0

.7
)

0 5 10 15 20 25 30 35 40 45 50

Time (s)

-0.8

-0.6

-0.4

-0.2

0

0.2

u
 (

=
0

.6
)

0 5 10 15 20 25 30 35 40 45 50

Time (s)

0

1

2

E
v
e

n
ts

 (
=

0
.8

)

Triggering Instants without slack e(t
l
)

0 5 10 15 20 25 30 35 40 45 50

Time (s)

0

1

2

E
v
e

n
ts

 (
=

0
.7

)

0 5 10 15 20 25 30 35 40 45 50

Time (s)

0

1

2

E
v
e

n
ts

 (
=

0
.6

)

Figure 6. Simulation results without the slack e(tl) in (24)
of our triggering scheme.

a small neighborhood of the equilibrium safely. This
can help significantly in the setting of distributed MPC
where the communication of control updates among sub-
systems can put heavy loads in the network traffic and
act as a bottleneck for implementation. In this sense,
the reduced frequency of updates and the knowledge of
next update time for each unit can be valuable in the

13

0 5 10 15 20 25 30 35 40 45 50

Time (s)

-1

0

1

2

x

States (Self-triggered *)

0 5 10 15 20 25 30 35 40 45 50

Time (s)

-0.4

-0.2

0

0.2

u

Inputs (Self-triggered *)

Figure 7. Simulation results with horizon N=2.

0 5 10 15 20 25 30 35 40 45 50

Time (s)

-1

0

1

2

x

States (Self-triggered *)

0 5 10 15 20 25 30 35 40 45 50

Time (s)

-0.4

-0.2

0

0.2

u

Inputs (Self-triggered *)

0 5 10 15 20 25 30 35 40 45

Time (s)

0

0.5

1

1.5

2

E
v
e

n
ts

0 5 10 15 20 25 30 35 40 45 50

Time (s)

2

4

6

8

H
o

ri
z
o

n

Figure 8. Simulation results with more flexible self-triggered
MPC with adjusting horizon mechanism.

scheduling of network communication. Extensions of the
idea to tracking problems and to distributed MPC are
currently being explored.

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5

2
States (Self−triggered *)

Time (s)

x

0 10 20 30 40 50 60
−1

−0.5

0

0.5
Inputs (Self−triggered *)

Time (s)

u

Figure 9. State and input trajectories of sparse implementa-
tion with α = 0.9.

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5

2
States (Self−triggered *)

Time (s)

x

0 10 20 30 40 50 60
−1

−0.5

0

0.5
Inputs (Self−triggered *)

Time (s)

u

Figure 10. State and input trajectories of sparse implemen-
tation with α = 0.8.

0 10 20 30 40 50 60
0

0.5

1

1.5

2

Time (s)

E
v
e
n
ts

Figure 11. Event triggering instants of sparse implementa-
tion with α = 0.8. The triggering instants are marked with
the circles with the value 1.

Acknowledgements

The authors would like to thank the kind comments and
valuable suggestions for this paper from Professor Lars
Grüne at the University of Bayreuth, and the anonymous
reviewers for their careful reading of the manuscript and
comments.

14

0 5 10 15 20 25 30 35 40 45 50

-1

0

1

2

x
R

States (Self-triggered *)

0 5 10 15 20 25 30 35 40 45 50

-0.5

0

0.5

u

Nominal Inputs (Self-triggered *)

0 5 10 15 20 25 30 35 40 45 50

-0.5

0

0.5

u
R

Robust Control Policy (Self-triggered *)

Figure 12. State and input trajectories of robust self-trig-
gered MPC case.

0 5 10 15 20 25 30 35 40 45 50

Time (s)

0

0.5

1

1.5

2

E
v
e

n
ts

Figure 13. Event triggering instants of robust self-triggered
MPC case.

References

[1] N. Altmüller and L. Grüne, “Distributed and boundary
model predictive control for the heat equation,” GAMM-
Mitt. 35, no. 2, pp. 131–145, 2012.

[2] N. Altmüller, L. Grüne and K. Worthmann, “A comparative
stability analysis of Neumann and Dirichlet boundary
MPC for the heat equation,” in Proceedings of the 1st
IFAC Workshop on Control of Systems Modeled by Partial
Differential Equations, Paris, France, 2013.

[3] N. Altmüller and L. Grüne, “Receding horizon optimal
control for the wave equation,” in Proceedings of the 49th
IEEE Conference on Decision and Control, Atlanta, Georgia,
2010.

[4] A. Anta and P. Tabuada, “To sample or not to sample: self-
triggered control for nonlinear systems,” IEEE Transactions
on Automatic Control, vol. 55, no. 9, pp. 2030–2042, 2010.

[5] E. Aydiner, F. D. Brunner, W. P. M. H. Heemels and F.
Allgöwer, “Robust Self-Triggered Model Predictive Control
for Constrained Discrete-Time LTI Systems based on
Homothetic Tubes,” in Proceedings of the European control
conference, Linz, Austria, 2015.

[6] B. Azmi and K. Kunisch, “On the stabilizability of the
Burgers equation by receding horizon control,” SIAM J.
Control Optim., vol. 54, no. 3, pp. 1378–1405, 2016.

[7] J. D. J. Barrads Berglind, T. M. P. Gommans, and W.
P. M. H. Heemels, “Self-trigggered MPC for constrained
linear systems and quadratic costs,” in Proceedings of the
4th IFAC Nonlinear Model Predictive Control Conference,
Noordwijkerhout, The Netherlands, 2012.

[8] G. Betti, M. Farina and R. Scattolini, “Distributed MPC: A
noncooperative approach based on robustness concepts,” in
Distributed MPC Made Easy, Springer, 2013.

[9] G. Betti, M. Farina and R. Scattolini, “Realization issues,
tuning, and testing of a distributed predictive control
algorithm,” Journal of Process Control, vol. 24, pp. 424–434,
2014.

[10] A. Boccia, L. Grüne and K. Worthmann, “Stability and
feasibility of state constrained MPC without stabilizing
terminal constraints,” Systems & Control Letters, vol. 72,
pp. 14–21, 2014.

[11] F. Borrelli, A. Bemporad and M. Morari , Predictive control
for linear and hybrid systems. Cambridge University Press,
New York, 2017.

[12] F. D. Brunner, M. Heemels and F. Allgöwer, “Robust self-
triggered MPC for constrained linear systems: A tube-based
approach,” Automatica, vol. 72, pp. 73–83, 2016.

[13] E. Camponogara, D. Jia, B.H. Krogh and S. Talukdar,
“Distributed model predictive control,” IEEE Control
Systems Magazine, vol. 22, issue. 1, pp. 44–52, 2002.

[14] L. Chisci, J. A. Rossiter and G. Zappa, “Systems with
persistent disturbances: predictive control with restricted
constraints,” Automatica, vol. 37, pp. 1019–1028, 2001.

[15] L. Dai, Y. Gao, L. Xie, K. H. Johansson and Y. Xia,
“Stochastic self-triggered model predictive control for linear
systems with probabilistic constraints,” Automatica, vol. 92,
pp. 9–17, 2018.

[16] M. D. Doan, P. Giselsson, T. Keviczky, B. De Schutter, and
A. Rantzer, “A distributed accelerated gradient algorithm
for distributed model predictive control of a hydro power
valley,” Control Engineering Practice, vol. 21, issue. 11, pp.
1594–1605, 2013.

[17] W. B. Dunbar and R. M. Murray, “Distributed receding
horizon control of multi-vehicle formation stabilization,”
Automatica, vol. 42, no. 4, pp. 549–558, 2006.

[18] A. Eqtami, D. V. Dimarogonas and K. J. Kyriakopoulos,
“Event-triggered control for discrete-time systems,” in
Proceedings of the 2010 American Control Conference,
Baltimore, USA, 2010.

[19] A. Eqtami, D. V. Dimarogonas and K. J. Kyriakopoulos,
“Event-triggered strategies for decentralized model predictive
controllers,” in Proceedings of IFAC World Congress, Milano,
Italy, 2011.

[20] A. Eqtami, D. V. Dimarogonas and K. J. Kyriakopoulos,
“Event-based model predictive control for the cooperation
of distributed agents,” in Proceedings of the 2012 American
Control Conference, Montréal, Canada, 2012.

[21] F. Farokhi, I. Shames and K. H. Johansson, “Distributed
MPC via dual decomposition and alternating direction
method of multipliers,” in J. M. Maestre and R. R.
Negenborn, Eds., Distributed MPC Made Easy, Springer-
Verlag, 2012.

[22] P. Giselsson, “Adaptive nonlinear model predictive control
with suboptimality and stability guarantees,” in Proceedings
of the 49th IEEE Conference on Decision and Control (CDC)
, Atlanta, USA, 2010.

[23] P. Giselsson and A. Rantzer, “Distributed model predictive
control with suboptimality and stability guarantees,” in
Proceedings of the 49th IEEE Conference on Decision and
Control (CDC) , Atlanta, USA, 2010.

[24] P. Giselsson, Gradient-Based Distributed Model Predictive
Control. PhD thesis, Department of Automatic Control,
Lund University, Sweden, November 2012 (Supplement A).

15

[25] T.M.P. Gommans and W.P.M.H. Heemels, “Resource-aware
MPC for Constrained Nonlinear Systems: A Self-Triggered
Control Approach,” Systems & Control Letters, vol. 79, pp.
59–67, 2015.

[26] L. Grüne, “Analysis and design of unconstrained nonlinear
MPC schemes for finite and infinite dimensional systems,”
SIAM Journal on Control and Optimizaiton, vol. 48, pp.
1206–1228, 2009.

[27] L. Grüne and A. Rantzer, “On the infinite horizon
performance of receding horizon controllers,” IEEE
Transactions on Automatic Control, vol. 53, no. 9, pp. 2100–
2111, 2008.

[28] L. Grüne , “NMPC without terminal constraints,” in
Proceedings of the IFAC Conference on Nonlinear Model
Predictive Control, Noordwijkerhout, The Netherlands, 2012.

[29] W. P. M. H. Heemels, K. H. Johansson and P. Tabuada, “An
introduction to event-triggered and self-triggered control,” in
Proceedings of the IEEE Conference on Decision and Control
(CDC) , Maui, USA, 2012.

[30] E. Henriksson, D. E. Quevedo, H. Sandberg and K. H.
Johansson, “Self-trigggered model predictive control for
network scheduling and control,” in Proceedings of the
8th IFAC Symposium on Advanced Control of Chemical
Processes, Furama Riverfront, Singapore, 2012.

[31] E. C. Kerrigan, Robust constraint satisfaction: invariant sets
and predictive control. PhD thesis, University of Cambridge,
U. K., 2000.

[32] A. Kozma, Distributed optimization methods for large scale
optimal control. PhD thesis, Faculty of Engineering Science,
KU Leuven, Belgium, 2014.

[33] M. Kvasnica, B. Takács, J. Holaza and D. Ingole,
“Reachability analysis and control synthesis for uncertain
linear systems in MPT,” IFAC-PapersOnLine, vol. 48, no. 14,
pp. 302–307, 2015.

[34] B. Lincoln and A. Rantzer, “Relaxing
dynamic programming,” IEEE Transactions on Automatic
Control, vol. 51, no. 8, pp. 1249–1260, 2006.

[35] C. Liu, H. Li, J. Gao and D. Xu, “Robust self-triggered
minmax model predictive control for discrete-time nonlinear
systems,” Automatica, vol. 89, pp. 333–339, 2018.

[36] J. M. Maciejowski, Predictive control: with constraints.
Prentice-Hall, Harlow, UK, 2002.

[37] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M.
Scokaert, “Constrained model predictive control: Stability
and optimality,” Automatica, vol. 36, no. 6, pp. 789–814,
2000.

[38] D. Q. Mayne, M. M. Seron and S. V. Raković, “Robust model
predictive control of constrained linear systems with bounded
disturbances,” Automatica, vol. 41, pp. 219–224, 2005.

[39] R. R. Negenborn, Multi-agent model predictive control with
applications to power networks. PhD thesis, Delft University
of Technology, Delft, The Netherlands, 2007.

[40] J. Pannek and K. Worthmann, “Stability and performance
guarantees for model predictive control algorithms without
terminal constraints,” ZAMM 94, no. 6, pp. 317–330, 2014.

[41] J. Pekar, P. Garimella, D. Germann and G.E. Stewart,
“Experimental Results for Sensor Selection and Multivariable
Controller Design for a Heavy-Duty Diesel Engine,”
in Proceedings of the E-COSM2012 Conference, Rueil-
Malmaison, France, 2012.

[42] J. A. Primbs and V. Nevistić, “Feasibility and stability
of constrained finite receding horizon control,” Automatica,
vol. 36, pp. 965–971, 2000.

[43] S. J. Qin and T. A. Badgwell, “A survey of industrial model
predictive control technology,” Control Engineering Practice,
vol. 11, pp. 733–764, 2003.

[44] J. B. Rawlings and D. Q. Mayne, Model Predictive Control:
Theory and Design. Nob Hill Publishing, Madison, USA, pp.
220–242, 2009 (Chapter 3 Robust Model Predictive Control).

[45] J. H. Sandee, Event-driven control in theory and practice:
trade-offs in software and control performance. PhD
Dissertatie, Technische Universiteit Eindhoven, Eindhoven,
The Netherlands, 2006.

[46] J. S. Shamma and D. Xiong, “Linear nonquadratic optimal
control,” IEEE Transactions on Automatic Control, vol. 42,
no. 6, pp. 875–879, 1997.

[47] P. Tabuada, “Event-triggered real-time scheduling of
stabilizing control tasks,” IEEE Transactions on Automatic
Control, vol. 52, no. 9, pp. 1680–1685, 2007.

[48] K. Worthmann, M. W. Mehrez, M. Zanon, M., G. K. Mann,
R. G. Gosine and M. Diehl, “Model predictive control of
nonholonomic mobile robots without stabilizing constraints
and costs,” IEEE Trans. Control Syst. Techn., vol. 24, no. 4,
pp. 1394–1406, 2016.

16

