145 research outputs found

    Plasmonic Enhancement of Emission from Si-nanocrystals

    Full text link
    Plasmonic gratings of different periodicities are fabricated on top of Silicon nanocrystals embedded in Silicon Dioxide. Purcell enhancements of up to 2 were observed, which matches the value from simulations. Plasmonic enhancements are observed for the first three orders of the plasmonic modes, with the peak enhancement wavelength varying with the periodicity. Biharmonic gratings are also fabricated to extract the enhanced emission from the first order plasmonic mode, resulting in enhancements with quality factors of up to 16.Comment: 4 pages, 5 figures added explanation of low purcell enhancement updated figure

    An accurate and efficient quasi-dynamic simulation method of electricity-heat multi-energy systems

    Get PDF
    Quasi-dynamic energy flow computation (EFC) has become a critical tool to determine and predict the states of the multi-energy system (MES), which helps improve MESā€™ operation efficiency and issues the security warning. However, methods in literature suffer numerical problems including fake oscillations, divergence, etc., Also, with the increasing of system dimensions, the computation efficiency can be hardly guaranteed due to the cross iterations between different nonlinear equations. This paper proposes an accurate and efficient method for quasi-dynamic energy flow computation. Using a scheme with total variation decreasing property, the numerical instability in solutions of thermal dynamics are effectively reduced. By estimating local truncation errors in a cheap way, the simulation step sizes are controlled adaptively and hence the overall simulation efficiency is greatly increased. Numerical tests were performed in a small system and the famous Barry Island system, which verified the advantages of the proposed method in both efficiency and accuracy

    MiRNA-145 increases therapeutic sensibility to gemcitabine treatment of pancreatic adenocarcinoma cells.

    Get PDF
    Pancreatic adenocarcinoma is one of the most leading causes of cancer-related deaths worldwide. Although recent advances provide various treatment options, pancreatic adenocarcinoma has poor prognosis due to its late diagnosis and ineffective therapeutic multimodality. Gemcitabine is the effective first-line drug in pancreatic adenocarcinoma treatment. However, gemcitabine chemoresistance of pancreatic adenocarcinoma cells has been a major obstacle for limiting its treatment effect. Our study found that p70S6K1 plays an important role in gemcitabine chemoresistence. MiR-145 is a tumor suppressor which directly targets p70S6K1 for inhibiting its expression in pancreatic adenocarcinoma, providing new therapeutic scheme. Our findings revealed a new mechanism underlying gemcitabine chemoresistance in pancreatic adenocarcinoma cells

    MCT: A tool for commenting programs by multimedia comments

    Full text link
    Program comments have always been the key to understanding code. However, typical text comments can easily become verbose or evasive. Thus sometimes code reviewers find an audio or video code narration quite helpful. In this paper, we present our tool, called MCT (Multimedia Commenting Tool), which is an integrated development environment-based tool that enables programmers to easily explain their code by voice, video and mouse movement in the form of comments. With this tool, programmers can replay the audio or video when they feel like. A demonstration video can be accessed at: http://www.youtube.com/watch?v=tHEHqZme4VEhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000333965800166&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Computer Science, Software EngineeringComputer Science, Theory & MethodsEngineering, Electrical & ElectronicEICPCI-S(ISTP)

    Coupled fiber taper extraction of 1.53 um photoluminescence from erbium doped silicon nitride photonic crystal cavities

    Get PDF
    Optical fiber tapers are used to collect photoluminescence emission at ~1.5 um from photonic crystal cavities fabricated in erbium doped silicon nitride on silicon. Photoluminescence collection via fiber taper is enhanced 2.5 times relative to free space, with a total taper collection efficiency of 53%. By varying the fiber taper offset from the cavity, a broad tuning range of coupling strength is obtained. This material system combined with fiber taper collection is promising for building on-chip optical amplifiers.Comment: 10 pages, 7 figure

    Effective Quantization for Diffusion Models on CPUs

    Full text link
    Diffusion models have gained popularity for generating images from textual descriptions. Nonetheless, the substantial need for computational resources continues to present a noteworthy challenge, contributing to time-consuming processes. Quantization, a technique employed to compress deep learning models for enhanced efficiency, presents challenges when applied to diffusion models. These models are notably more sensitive to quantization compared to other model types, potentially resulting in a degradation of image quality. In this paper, we introduce a novel approach to quantize the diffusion models by leveraging both quantization-aware training and distillation. Our results show the quantized models can maintain the high image quality while demonstrating the inference efficiency on CPUs. The code is publicly available at: https://github.com/intel/intel-extension-for-transformers

    Review of Associations between Built Environment Characteristics and Severe Acute Respiratory Syndrome Coronavirus 2 Infection Risk.

    Get PDF
    The coronavirus disease 2019 pandemic has stimulated intensive research interest in its transmission pathways and infection factors, e.g., socioeconomic and demographic characteristics, climatology, baseline health conditions or pre-existing diseases, and government policies. Meanwhile, some empirical studies suggested that built environment attributes may be associated with the transmission mechanism and infection risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, no review has been conducted to explore the effect of built environment characteristics on the infection risk. This research gap prevents government officials and urban planners from creating effective urban design guidelines to contain SARS-CoV-2 infections and face future pandemic challenges. This review summarizes evidence from 25 empirical studies and provides an overview of the effect of built environment on SARS-CoV-2 infection risk. Virus infection risk was positively associated with the density of commercial facilities, roads, and schools and with public transit accessibility, whereas it was negatively associated with the availability of green spaces. This review recommends several directions for future studies, namely using longitudinal research design and individual-level data, considering multilevel factors and extending to diversified geographic areas

    Filamentā€Free Bulk Resistive Memory Enables Deterministic Analogue Switching

    Full text link
    Digital computing is nearing its physical limits as computing needs and energy consumption rapidly increase. Analogueā€memoryā€based neuromorphic computing can be orders of magnitude more energy efficient at dataā€intensive tasks like deep neural networks, but has been limited by the inaccurate and unpredictable switching of analogue resistive memory. Filamentary resistive random access memory (RRAM) suffers from stochastic switching due to the random kinetic motion of discrete defects in the nanometerā€sized filament. In this work, this stochasticity is overcome by incorporating a solid electrolyte interlayer, in this case, yttriaā€stabilized zirconia (YSZ), toward eliminating filaments. Filamentā€free, bulkā€RRAM cells instead store analogue states using the bulk point defect concentration, yielding predictable switching because the statistical ensemble behavior of oxygen vacancy defects is deterministic even when individual defects are stochastic. Both experiments and modeling show bulkā€RRAM devices using TiO2ā€X switching layers and YSZ electrolytes yield deterministic and linear analogue switching for efficient inference and training. Bulkā€RRAM solves many outstanding issues with memristor unpredictability that have inhibited commercialization, and can, therefore, enable unprecedented new applications for energyā€efficient neuromorphic computing. Beyond RRAM, this work shows how harnessing bulk point defects in ionic materials can be used to engineer deterministic nanoelectronic materials and devices.A resistive memory cell based on the electrochemical migration of oxygen vacancies for inā€memory neuromorphic computing is presented. By using the average statistical behavior of all oxygen vacancies to store analogue information states, this cell overcomes the stochastic and unpredictable switching plaguing filamentā€forming memristors, and instead achieves linear, predictable, and deterministic switching.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163547/3/adma202003984_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163547/2/adma202003984-sup-0001-SuppMat.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163547/1/adma202003984.pd
    • ā€¦
    corecore