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ABSTRACT Three-dimensional Reconstruction has drawn much attention in computer vision. Generating
a dense point cloud from a single image is a more challenging task. However, generating dense point clouds
directly costs expensively in calculation and memory and may cause the network hard to train. In this work,
we propose a two-stage training dense point cloud generation network. We first train our attention-based
sparse point cloud generation network to generate a sparse point cloud from a single image. Then we train
our dense point cloud generation network to densify the generated sparse point cloud. After combining
the two stages and finetuning, we obtain an end-to-end network that generates a dense point cloud from
a single image. Through evaluation of both synthetic and real-world datasets, we demonstrate that our
approach outperforms state of the art works in dense point cloud generation. Our source code is available at
https://github.com/VIM-Lab/AttentionDPCR.

INDEX TERMS 3D reconstruction, point-cloud, attention mechanism, two-stage training, single view
reconstruction.

I. INTRODUCTION
In the field of computer vision, 3D reconstruction from
images is a higher-level task than an image classification
task, because computers not only recognize objects but also
model objects. Although human vision is flat, after years
of learning and cognition, when seeing an object, a human
can not only recognize the class and composition of the
object but also predict its possible 3D shape. Therefore,
excellent machine vision should also be able to have 3D
visual perception which makes machine feel the 3D shape
from the plane vision. Furthermore, machines can interact
with objects when they canmodel objects, such as robotic arm
applications.

With the great success of deep learning in 2D image
processing, many researchers tried to duplicate this success
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into 3D shape processing. Voxel-based 3D reconstruction
methods were first proposed because voxels behave like 2D
images with regular and ordered structures and distributions.
Therefore, simply expanding a 2D convolution into a 3D
convolution can be well used in CNN for voxel data. Prior
studies [1]–[3] explored the reconstruction methods of 3D
voxel grids. For each voxel in 3D grids, the network predicts
a probability score of whether or not the voxel is occupied,
thereby obtaining a voxel 3D occupancy grid. However, each
grid in 3D volumetric representation contains sparse infor-
mation while a large number of voxels inside are unhelpful
in describing the surface feature of 3D shapes. Therefore,
3D volumetric representation is expensive and wasteful in
calculation and memory which will grow at the cubic level,
especially with increasing resolution. 3D convolution also
consumes a lot when extracting features and sampling, which
also results in low and limited resolution for most 3D voxel
reconstruction tasks.
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FIGURE 1. Point Clouds generated from a single image. (a) A single RGB
image. (b) A sparse point cloud generated from the image. (c) A dense
point cloud generated from the sparse point cloud.

Compared with 3D voxels, point clouds are more effi-
cient to represent 3D shapes. Point clouds do not have a
problem with the sparsity of information because each of
their points effectively describes rich location information.
Besides, point clouds are sampled from surfaces of objects
so that point clouds capture the details of surfaces of objects
while there are no extra internal points which are useless for
representing 3D shapes. Fan et al. [4] firstly proposed a point
set generation network which generated point clouds from
single images and proposed an effective metric to measure
the distance between two point sets. Feature extraction and
convolution operations for point clouds were also introduced
by Qi et al. [5], [6].
In addition, since 3D reconstruction is based on image

processing, the primary task of 3D reconstruction is to extract
useful and important features from images. Thus, it is also
inseparable from related works in image processing espe-
cially image classification which has achieved ideal results
through many researchers’ works. This lays a solid founda-
tion for 3D reconstruction tasks and the possibility of devel-
opment. However, most existing 3D reconstruction methods
apply vanilla encoders such as VGGNet [7] to extract image
features without taking into account that different compo-
nents of objects in images are not equally important or obvi-
ous. Besides, directly generating dense point clouds has some
disadvantages. Predicting 16k point coordinates is a large
scale regression task which may cause the network more
complex and hard to train. The existing dataset is insufficient
to train the network. It is also very difficult to apply compu-
tationally heavy loss, EMD, to such many points.

In this work, we propose a two-stage training attention-
based dense point cloud generation network. Firstly,
we extract image features and generate sparse point clouds
of 1024 points by introducing attention-based encoder.
The image encoder based on the attention mechanism will
enhance features of details of objects in images and obtain
better features to get higher quality predictions. Then we
generate dense point clouds of 16384 points from sparse point
clouds through dense point cloud generation network which
consists of two densemodules. Finally, we combine these two
stages and finetune the network to obtain dense point clouds
from single images.

In summary, our contributions in this work are as follows:

• We propose a two-stage training network for generating
a dense point cloud, which is densifying a sparse point

cloud generated from a single image into a dense point
cloud.

• We introduce an encoder based on attention mechanism
whichmakes the network paymore attention to details of
shape features in the process of generating sparse point
clouds and obtain better reconstruction results.

• We demonstrate that our dense point cloud generation
network can directly generate high quality 16x denser
point clouds without any intermediate inputs or outputs.

• We evaluate our network on the ShapeNet [8] dataset
and the Pix3D [9] dataset and highlight the efficacy
of our work in generating dense point clouds on syn-
thetic and real-world datasets, which outperforms the
state-of-the-art reconstruction methods.

II. RELATED WORK
A. 3D RECONSTRUCTION
The task of three-dimensional reconstruction from a single
image is being studied bymore andmore researchers in recent
years. Due to significantly successful works of 2D CNN in
the field of 2D images processing, some researchers attempt
to generate 3D voxels using 3D CNN. Wu et al. [1] took
2.5D depth maps as input and adopted Gibbs sampling to
predict 3D shapes. Choy et al. [2] used a 3D recurrent neural
network to map multi-view or single-view 2D images to 3D
voxels. Gridhar et al. [3] learned the embedding of hidden
layers by 3D voxel self-encoder to match the corresponding
2D images, and then decoded and generated 3D voxels. Some
works [10]–[12] also used octree to organize voxel data to
relatively efficiently operate and reconstruct 3D voxels.

Fan et al. [4] proposed a network for generating a point
set from a single image and an effective metric that measures
the distance between two point sets. The results of point set
generation network outperformed volumetric approaches [2].
Deformation networks [13], [14] utilized the characteristic of
point clouds to be easily deformed. The network learned a
deformation matrix to move the control points of matched
templates to deform the templates to the final reconstruc-
tion results. Mandikal et al. [15] proposed a latent matching
network which combines image encoding with point cloud
encoding for point cloud reconstruction. Zhang et al. [16]
reconstructed point clouds from single images with com-
plex background by combining nearest point clouds features
retrieved from the synthetic dataset. There were also some
works [17]–[21] that attempted to reconstruct point clouds
by utilizing 2D supervision such as projection, silhouettes
and depth maps for 3D reconstruction. Some works [22]–[25]
generate 3D meshes from images by deforming primitive
meshes, ellipsoid meshes or prepared mesh templates.

B. POINT CLOUD PROCESSING
Point clouds are unordered and distributed in non-regular
spaces so they cannot be manipulated by using convolutional
neural networks directly. Qi et al. [5] proposed PointNet
which aligned unordered point cloud and point cloud feature

VOLUME 7, 2019 137421



Q. Lu et al.: Attention-Based Dense Point Cloud Reconstruction From a Single Image

FIGURE 2. Overview of our network structure.

FIGURE 3. Sparse point cloud generation network.

through a simple spatial transformation network and used
multi-layer perceptron and global pooling to extract point
cloud features. Then Pointnet++ [6] integrated global and
local features with a hierarchical feature learning structure.
Wang et al. [26] proposed edge convolution that extracted
local features by finding k nearest neighbor in both point
and feature space. Li et al. [27] proposed SO-Net that can
simulate the spatial distribution of point clouds by construct-
ing self-organizing maps. Wu et al. [28] proposed PointConv
and corresponding PointDeconv which extended traditional
image convolution into point clouds. Yu et al. [29] proposed
PU-Net to upsample uniform point clouds.

Mandikal and Radhakrishnan [30] proposed a deep pyra-
midal network for point cloud reconstruction, DensePCR,
which is more related to our work. DensePCR hierarchi-
cally predicted point clouds of increasing resolution by first
predicting a low-resolution point cloud and then increasing
its resolution twice, each 4x denser, to a 16x denser high-
resolution point cloud. However, there are two key differ-
ences between our work and DensePCR. First, DensePCR
adopted a commonly used encoder, VGGNet [7], to generate
a point cloud from a single image. In contrast, our encoder
introduces attention mechanism that allows the network to
pay more attention to details of objects in images, extract-
ing better features and thus obtaining better reconstruction
results. Second, DensePCR generates a four times denser
point cloud through its dense reconstruction network. In order
to generate dense point clouds of 16k points, DensePCR
needs to train two dense reconstruction networks which first
generates 4k points from 1k points and then generates 16k
points from 4k points. The former training stage needs extra

ground truth point clouds of 4k points to compute loss.
Besides, two dense reconstruction networks of DensePCR
have no communication, making information transfer more
difficult. In contrast, our network can directly predict a
16 times denser point cloud without any extra intermediate
input or output.

III. APPROACH
Our goal is to generate dense point clouds from single
images. In particular, we first generate a sparse point cloud
of 1024 points from a single image and then densify it to a
dense point cloud of 16384 points. Our attention-based dense
point cloud reconstruction network is shown in Figure 2.
A single input RGB image is passed through an attention-
based encoder and a decoder consists of a set of deconvs
that outputs a sparse point cloud. Then the sparse point
cloud is subsequently passed through our dense point cloud
generation network to generate a 16x denser point cloud
without extra intermediate prediction or input. In this section,
we describe two stages of our approach and our training
strategy in detail.

A. ATTENTION-BASED SPARSE POINT CLOUD
GENERATION
As shown in Figure 3, our training pipeline begins with
generating sparse point clouds from single images. Our sparse
point cloud generation network encodes an image to feature z
and decodes z to a sparse point cloud. Image processing tasks
has achieved great success with the help of attention mecha-
nism, while the first stage of 3D reconstruction is extracting
features from images. Inspired by [31]–[33], we build an
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FIGURE 4. Attention module. The top branch is the trunk branch that
consists of two residual blocks. The bottom branch is the mask branch.

attention-based encoder aiming to focus on the specific trunk,
branch structures or details of objects in images. The encoder
is constructed by stacking multiple attention modules to
obtain attention-aware image features. In order to make the
network easier to train, we add residual connections inside
and outside the attention modules. The encoder maps the
input image to an embedding space and obtains feature z. Our
decoder is constructed by a set of deconvs and predicts point
clouds from image features. Compared with full connections,
deconvs can combine features of the decoder with the corre-
sponding features of the encoder through U-Net [34] which
enhances features. Convs in image encoder and deconvs in
point cloud decoder are symmetrical operations. Before the
last FC layer in point cloud decoder, image features and
point cloud features are consistent in size and channel in
corresponding layers, which are both (B, H, W, C), so we
could concat them directly. The decoder takes feature z as
input and finally outputs a matrix of shape 1024 ∗ 3, where
each row contains the coordinates of each point. The key
difference between our work and existing 3d reconstruction
works is the introduction of attention mechanism which is
implemented by attention modules.

1) ATTENTION MODULE
As shown in Figure 4, the attention module is divided into
two branches: trunk branch and attention mask branch. The
trunk branch performs the function of a conventional encoder
that extracts image features T (x) through CNN. The attention
mask branch learns a mask M (x) which has the same size as
T (x) through an hourglass structure. The key to implementing
an attention mechanism is the attention mask branch. Given
input features, down samplings are performed several times to
increase the receptive field and extract global features. Then
the global features are extended to the original size by a set
of symmetrical upsampling to obtain the mask. A sigmoid
layer is followed to normalize the mask range to [0,1]. The
mask can guide output features in each position after the dot

FIGURE 5. Visualization of features before and after attention modules.
(a) The input image. (b) Features before passing to the first attention
module. (c) Features after the first attention module. (d) and (e) Features
before and after the second attention module. Notice that attention
modules focus on and capture the edge and legs of the chair.

product the mask and the output of trunk branch. Specifically,
we use residual connection inside attention module so the
output of attention module is:

Hi(x) = (1+Mi(x)) ∗ Ti(x) (1)

where i denotes channel i of feature maps.

B. DENSE POINT CLOUD GENERATION
After generating sparse point clouds, we build a dense point
cloud generation network to densify the generated sparse
point cloud to a dense point cloud. Specifically, we generate
a dense point cloud of 16384 points from a sparse point
cloud of 1024 points through two dense modules without
intermediate input and output. The dense module consists of
feature extraction and feature expansion. A skip-connection
enhances the communication between two dense modules
through feature interpolation. The network structure is shown
in Figure 6.

1) FEATURE EXTRACTION
We strive for extracting features from a generated sparse
point cloud. In point cloud processing, PointNet [5] is very
effective for extracting global features of point clouds and
performs well in classification tasks. Thus, we adopt an MLP
structure similar to PointNet to operate every individual point
and obtain global features of shape N ∗ Cg via max-pooling
the output of a set of MLPs. However, global features cannot
represent local geometric information. DensePCR [30] and
EC-Net [35] adopt Pointnet++ [6] to extract local features of
point clouds. But Pointnet++ still treats individual points in
local point sets independently by point set sampling and does
not consider relationships between point pairs. As the num-
ber of points increasing, sampling and finding neighboring
points will cost more memories and calculation. Inspired by
dynamic graph convolution [26], we define local neighbor-
hood in feature space and adopt a set of edge convolutions
to extract local features. Given point coordinates of shape
N ∗ 3 from the input point cloud or point features of shape
N ∗ Cf from a previous layer, we compute edge features for
each point by applying an MLP and obtain a tensor of shape
N ∗ Ce after max-pooling among neighboring edge features,
where Cf is the channel of input point features and Ce is the
number of neurons of the MLP. The local neighborhood is
computed by KNN search in the feature space and updated
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FIGURE 6. Dense point cloud generation network. The network consists of two consequent dense modules and each dense module contains feature
extraction and feature expansion. (a) Feature extraction concatenates point feature (N ∗ 3), global feature (N ∗ Cg) and local feature (N ∗ Cl ) then
outputs the concatenated feature (N ∗ Cp) where Cp = 3+ Cg + Cl . (b) Feature Expansion concatenates the tiled concatenated feature (4N ∗ Cp) and
tiled grid feature (4N ∗ 1) to obtain final feature (4N ∗ C) where C = Cp + 1, then generate a denser point cloud of dimension 4N ∗ 3 through a set of
MLPs. Feature interpolation enhances communication between two dense modules.

dynamically due to the different feature outputs of each layer.
Then we concatenate point coordinates, global features, and
local features to obtain the concatenated feature of shape
N ∗ Cp and pass it to next stage as shown in Figure 6 (a).

2) FEATURE INTERPOLATION
While DensePCR trains two dense reconstruction networks
independently, we only train one dense point cloud gener-
ation network by introducing a skip-connection to enhance
the communication between dense modules. Due to different
point cloud scales between two dense modules, we need to
adopt feature interpolation while connecting features from
two dense modules. Inspired by [22], we use bilateral inter-
polation. For the first dense module d1, pi and Fi denote the
coordinates of i-th point and its extracted features respec-
tively while pi′ and Fi′ denote the coordinates of i′-th point
and its extracted features respectively in the second dense
module d2. Ni′ denotes the spatial KNN of pi from d2. The
interpolated feature F̃i is:

F̃i =

∑
i′∈Ni′

θ (pi, pi′) ϕ (Fi,Fi′)Fi′∑
i′∈Ni′

θ (pi, pi′) ϕ (Fi,Fi′)
(2)

where θ and ϕ are two Gaussians defined as:

θ (pi, pi′) = e
−

(
‖pi−pi‖

r

)2
(3)

ϕ (Fi,Fi′) = e
−

(
‖Fi−Fi‖

h

)2
(4)

The width parameters r and h denote the average distance to
the closest neighbor.

Instead of concatenating interpolated features and
extracted features which would widen the network, we apply
a residual skip-connection, i.e., F̃i = Fi′ + Fi.

3) FEATURE EXPANSION
In this stage, we expand features to an upsampled set of point
coordinates and the upsampling factor is 4. PU-Net [29] and
EC-Net [35] replicate each point for 4 times and pass each
replicant independently to an individual set of MLPs, which
may cause the replicant points to cluster around the original
points. The repulsion loss is introduced to separate these clus-
tered points but also brings more calculation andmaymislead
the distribution of points. Instead of applyingMLPs to expand
feature, we replicate extracted point features for 4 times to
obtain expanded point features of shape 4N ∗ Cp and assign
N 2D grids to the replicated and overlapped points. These
2D grids learn to fit the surfaces near the points of a denser
point cloud and guide replicated points to distribute around
the surfaces. With the help of these 2D grids, the network
learns to separate points without using the repulsion loss.
We reshape these 2D grids of shape 2 ∗ 2 to 4 ∗ 1 where
each 1D grid corresponds every single point and obtain grid
features of shape 4N ∗ 1. After concatenating grid features
and expanded point features, the final point features of shape
4N ∗ C are passed through a set of MLPs to predict point
coordinates of shape 4N ∗ 3 as shown in Figure 6 (b).

C. TRAINING STRATEGY
We adopt a two-stage training strategy by first training
sparse point cloud generation network and dense point cloud
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generation network separately and then combining two net-
works by finetuning. Finally, we obtain an end-to-end net-
work that takes a single image as input and outputs a dense
point cloud.

We use the most commonly-used loss function in point
cloud reconstruction tasks, chamfer distance [4], to train
both of two stages. The CD is a point-wise L2 distance that
measures the distance between two point sets. For each point
in point set S1, the CD finds the nearest neighbor in the other
point set S2 then sums the squared distances up, and vice
versa. It is defined as:

dCD (S1, S2)=
∑
x∈S1

min
y∈S2
‖x − y‖22+

∑
y∈S2

min
x∈S1
||x − y‖22 (5)

where x denotes points in point set S1 and y denotes points in
point set S2.

The CD is continuous-differential and the computation
of each point pair is independent so it is an efficient loss
function. It can evaluate the overall similarity between two
point sets but it only focuses on finding the nearest neighbor
point pairs without checking that whether some points regard
exactly the same point in the other point set as their near-
est neighbor, which may make these points tend to cluster
wrongly and lead to a point set uniformity problem. In this
case, the CD metric may be low but the two-point sets may
not be similar. The Earth Mover’s distance [4] solves the
problem by enforcing a point-to-point mapping between two
point sets, which is defined as:

dEMD (S1, S2) = min
φ:S1→S2

∑
x∈S1

‖x − φ(x)‖2 (6)

where φ is a bijection.
However, the EMD is computationally expensive as a loss

function, especially for dense point clouds. In order to take
advantages of both loss functions, we first train our two stages
separately using the CD loss. When combining the two stages
together and finetuning, we optimize the EMD loss of the first
stage to obtain relatively uniform sparse point clouds.We also
optimize the CD loss between the outputs of the first dense
module and the ground truth.

IV. EXPERIMENTS
A. DATASET
Our 3D models come from ShapeNet [8] dataset. In order to
compare with previous works, we select about 44k synthetic
models from 13 different categories and use the 80%-20%
train/test split provided by [2]. The input images provided
by [2] and used in previous works [15], [30] are randomly
rendered from 24 different azimuth angles which contain
many bad viewpoints that can not express the overall shape
of models in images. Besides, previous works only used one
image of 24 of each model as their input and sampled points
on mesh surfaces of the model as the ground truth but without
aligning them with the image of the corresponding view-
point. Without this image-to-model mapping, the network
may be hard to train and the rest of 23 images are useless.

PSGN [4] was trained with a translated, rotated, and scaled
version of ShapeNet with parameters we do not have access
to. Thus, we render each 3D model into RGB images with
the resolution of 256 ∗ 256 from 12 fixed azimuth angles as
our input images. We find some models with broken textures
which may mislead network training so we remove the tex-
tures of models. We sample 1024 and 16384 points on the
mesh surface of each model uniformly using farthest point
sampling as the ground truth point clouds. The number of
sampled points of the ground truth is selected to be able to
compare with previous works. Then we copy and align each
point cloud with the image of the corresponding viewpoint to
build an image-to-model mapping for all 12 rendered images
of each model, which gets full use of all rendered images and
augments the dataset.

B. IMPLEMENTATION
Our network is trained in two stages. First, our attention-
based sparse point cloud generation network starts with an
encoder which consists of a set of convs, 3 attention modules
with 3 residual blocks followed and final 3 residual blocks.
The encoder takes an RGB image with the size of 256 ∗
256 ∗ 3 as input and outputs image features of dimension
4 ∗ 4 ∗ 512. The decoder that consists of a set of convs
and deconvs generates a sparse point cloud of 1024 points
from the image features by predicting point coordinates of
dimension 1024 ∗ 3. Then the generated sparse point cloud
is passed through our dense point cloud generation network
which consists of two consequent dense modules. Either
dense module extracts global features using MLPs of dimen-
sion [32, 64, 64] and local features using edge convs of
dimension [32, 64, 128] where we set k of nearest neighbors
to be 20 in edge convs. Global features and local features are
concatenated and then passed from the first dense module to
the second dense module by feature interpolation. After tiling
the concatenated features for 4 times, we assigned 2D grids
with value [[−0.1,0.1], [−0.1,0.1]] to each point to expand
features. The concatenated features are passed to MLPs of
dimension [128, 128, 64, 3] which outputs 4 times denser
point clouds. After passing through two consequent dense
modules, the generated sparse point cloud of 1024 points is
densified to a dense point cloud of 16384 points. We finally
finetune the two stages to obtain an end-to-end network.
We use Adam optimizer with a learning rate of 3e-5 and a
minibatch size of 10.

C. EVALUATION METHODOLOGY
To evaluate quantitatively, we report the CD metric and the
EMD metric introduced in Section III-C as previous works
did. The CD metric efficiently evaluates the overall similar-
ity between two point clouds and the EMD metric is more
expressive in point cloud uniformity. More details of these
two metrics can refer to [4]. The implementation of CD and
EMD are followed by [4] and [36], which are also used
in [15], [24], [30]. For CD and EMD, smaller is better.

VOLUME 7, 2019 137425



Q. Lu et al.: Attention-Based Dense Point Cloud Reconstruction From a Single Image

TABLE 1. Comparison with PSGN-FC and DensePCR on ShapeNet dataset. CD and EMD are both scaled by 1e3. Smaller is better. Our approach is better
than PSGN-FC and DensePCR in most categories on in most categories on both CD and EMD.

D. BASELINES
We consider the dense version of PSGN [4] and
DensePCR [30] as the baselines for dense point cloud gen-
eration task. We implement both the dense version of PSGN
and DensePCR following the implementations in DensePCR
and train them on the same ShapeNet dataset to have a
fair comparison. We select PSGN-FC with a decoder con-
sists of fully connected layers to be the dense version of
PSGN, which performs better than PSGN-ConvFC with a
decoder consists of both deconvs and fully connected layers
according to DensePCR. Since DensePCR is a multi-stage
training network similar to ours, we also consider the sparse
generation network of DensePCR which does not introduce
attention mechanism as the baseline for sparse point cloud
generation to highlight the efficacy of our attention-based
encoder for sparse point cloud generation. In order to have
a fair comparison and ensure that all networks have been
converged, the sparse point cloud generation of DensePCR
is trained 50 epochs and two dense reconstruction networks
of DensePCR are trained 20 epochs. PSGN-FC and fine-
tuning stage of DensePCR are trained 40 epochs. Our sparse
point cloud generation network and dense point cloud gener-
ation network are trained 50 and 20 epochs respectively and
finetuning stage is trained 40 epochs which are the same as
DensePCR.

E. EVALUATION ON ShapeNet
We evaluate our approach on ShapeNet [8] dataset. Given a
single RGB image as input, we first generate a sparse point
cloud and then densify it to a dense point cloud. A sparse point
cloud has 1024 points, corresponding to PSGN [4] that also
reconstruct point clouds of 1024 points. A dense point cloud
has 16384 points, corresponding to the ground truth point
clouds of 16384 points that are commonly used in previous
works [4], [14], [30].

We report the CD and EMD of our approach for all cate-
gories compared with PSGN-FC and DensePCR in Table 1.
We outperform them in 9 out of 13 categories in CD
while our mean score of CD is 28.3% lower than that of

TABLE 2. Comparison between DensePCR (sparse) and Ours (sparse) on
ShapeNet dataset. The mean scores of CD and EMD are both scaled
by 1e3. Smaller is better. Our sparse point cloud generation outperforms
DensePCR in 11 out of 13 categories. Since sparse point cloud generation
is not what we focus on, we briefly report the comparison of mean scores
of CD and EMD to highlight the efficacy of our attention-based encoder.

PSGN-FC and 13.2% lower than that of DensePCR. As for
EMD, we outperform PSGN-FC in all categories and out-
perform DensePCR 9 out of 13 categories while our mean
score of EMD is 70.4% lower than that of PSGN-FC and 1.7%
lower than that of DensePCR.

Compared with PSGN-FC, the gain in both metrics of ours
especially the significant gain in EMD can be attributed to
our two-stage training strategy, which is generating sparse
point clouds from single images and then densifies them to
dense point clouds. Our first stage is optimized via the EMD
loss, which ensures the generated sparse point clouds to be
uniform while the cost of calculation and memory can be
acceptable due to the small number of generated points of the
first stage. Instead of directly generating dense point clouds,
this two-stage training strategy ensures that we can train our
network based on finer initial reconstruction results from the
first stage to avoid propagating and extending errors during
the next stage of training.

Compared with DensePCR, the gain in bothmetrics of ours
can be attributed to our better sparse point cloud reconstruc-
tion results from the first stage with the help of attention
mechanism. To better highlight the efficacy of our attention-
based encoder, Table 2 shows that our sparse point cloud
generation outperforms sparse point cloud generation of
DensePCRwhile our mean scores of CD and EMD are 18.6%
and 9.1% lower. Qualitative results are shown in Figure 7.
Our attention-based encoder makes the network pay more
attention to the trunk structures of object such as trunk parts
of chairs and lamps while the branch details of object are also
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FIGURE 7. Qualitative results on ShapeNet. We compare our sparse point cloud generation with that of DensePCR at left. Each sparse point cloud has
1024 points. Notice that we capture finer details from the input images such as chairs’ legs and the post of the lamp. We also compare our dense
point cloud generation with PSGN-FC and DensePCR at right. Each dense point cloud has 16384 points We preserve both the overall shapes and
details after densifying sparse point clouds.

preserved such as chair legs. The encoder of DensePCR does
not recognize the thin and tight structures so it might miss
the structure details or cluster more points on them. Notice
that predicted points of our sparse point generation distribute
more exactly and reasonably, which would not expand thin
and tight structures like chair legs to thick or sparse ones
while still maintain the high quality of the overall shapes.
Besides, we need to point out that our dense point cloud
generation does not take extra point clouds as intermediate
input in training, while DensePCR needs to firstly densify
sparse point clouds with 1024 points to 4096 points and
then to 16384 points so it needs extra intermediate ground
truth point clouds of 4096 points and needs to train two
dense reconstruction networks. Our approach directly pre-
dicts dense point cloud of 16384 points from sparse point
clouds of 1024 points in one shot. Even without extra data

and extra training, we still obtain better EMD metric than
DensePCR while significantly outperform it in CD while our
dense point cloud reconstruction results preserve both overall
shapes and branch details.

But failure cases still exist in our experiment. As shown
in Table 1, we reconstruct chairs, tables, benches, and sofas
much better than PSGN-FC and DensePCR. These categories
share some common features such as main large plane sur-
faces, tight and long branches, clear boundaries and edges.
Due to a large amount of these categories in training data,
our attention mechanism captures these features well. But
airplanes do not share these features while they have much
thinner and slighter wings and empennages. Due to the
normalization of 3D models which ensures models of each
category are on the same scale, airplanes become relatively
smaller with even smaller and unclear details such as engines
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FIGURE 8. Qualitative results on Pix3D. We compare our sparse point cloud generation with that of DensePCR at left and our dense point cloud
generation with PSGN-FC and DensePCR at right. We generate more resonable point clouds even with the input from a different distribution. All models
are trained on ShapeNet training set and test on Pix3D.

and empennages in rendered images. Besides, the cabin and
wings of airplanes lie in the horizontal direction. They might
become shorter in a large number of images because the view-
point also rotates horizontally around the center of objects.
Without depth information, the network can not estimate
the length of wings in some images at certain viewpoints.
These factors make our attention mechanism less effective in
capturing features in airplanes. But our approach still obtains
better results in most categories and mean scores.

We also perform an ablation study to demonstrate the
efficacy and contribution of our two important components:
attention modules and feature interpolation. Table 3 reports
the performance of each network by removing one compo-
nent from the full network. We first remove attention mod-
ules and corresponding residual connections from our sparse
point cloud generation network. The mean scores of CD
and EMD are 1.4% and 8.2% higher than our full network.
We then remove feature interpolation from our dense point
cloud generation network. Without the feature interpolation
and skip connection between two dense modules, the mean
scores of CD and EMD are 4.2% and 0.6% higher than our
full network. Both these two components contribute to the
performance of our final network.

F. RECONSTRUCTION FROM REAL-WORLD IMAGES
We test our network on Pix3D [9] dataset which consists
of real-world images and corresponding masks, poses and
ground truth 3d models. We evaluate our trained model on

TABLE 3. Ablation study that evalutates the contribution of each
component to the performance of the network.

categories that cooccur in ShapeNet dataset and exclude
images having occlusion and truncation from the test set as
previous works [9], [30] did. We mask the backgrounds in
images using the provided masks and move the main objects
to the center position and resize the images to 256 ∗ 256 as
our input. We need to point out that real-world images of real
objects differ from rendered images of synthetic models in
two aspects. First, illumination in the real world may bring
many changes to photos of objects such as brightness and
shadows. Second, details of objects in real world are more
than synthetic models. But our approach still obtains accept-
able reconstruction results from real-world images. We also
compare our approach with baselines. All of our model and
baselines’ models are trained on ShapeNet dataset.

As shown in Table 4, our approach outperforms DensePCR
in all categories while our mean scores of CD and EMD
are 12.4% and 0.7% lower respectively. Our approach also
outperforms the dense version of PSGN-FC significantly in
EMD with a 50.5% lower mean score but obtain a higher
mean score on CD. Figure 8 shows some sample visualiza-
tion results. We notice that even with the best CD metric,
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TABLE 4. Comparison with PSGN-FC and DensePCR on Pix3D dataset. CD and EMD are both scaled by 1e3. Smaller is better.

FIGURE 9. Comparison to EC-Net. Given the input generated sparse point
cloud, the dense point cloud generated by EC-Net leaves many holes
while ours fills them in and keeps the point cloud tight.

PSGN-FC gets non-ideal reconstruction results and predicts
highly incoherent point clouds with many clustered points.
Aswe have analyzed the CD in Section III-C, the limitation of
the CD is that the metric can be low when both predicted and
ground truth point clouds consist of a large number of clus-
tered points because it is not a point-to-point mapping. Point
clouds of sofas and many chairs consist of many clustered
points. So the CDmay not evaluate the reconstruction quality
precisely especially when the EMD is not so good. Our pre-
dicted point clouds are corresponded with input images and
still preserve overall shapes and capture more shape details
such as legs of chairs and tables or edges of sofas than point
clouds generated by PSGN-FC and DensePCR.

G. COMPARISON TO POINT CLOUD UPSAMPLING
METHOD
Although there are some works directly focus on point cloud
upsampling such as PU-Net [29] and EC-Net [35], our work
is different from them. EC-Net, the improved version of
PU-Net, is designed to upsample highly uniform point clouds.
It is trained by points grouped in local patches and tries to
learn local information of point clouds. Its training is easy
and efficient because it only processes a small number of
points, which would not cost much calculation and memory
when computing the CD or other losses and finding nearest
neighbors. It performswell in highly uniform point clouds but
can not handle point clouds generated from images, which
leads to the point cloud uniformity problem. The generated
point clouds are not highly uniform even though the network
is trained with EMD loss, which means there might be some
sparse parts of the object where it is supposed to be dense.
EC-Net only cares about local information so it might remain
holes after upsampling input point clouds, which is shown as
Figure 9. But our work can handle the predicted point clouds

and fill the holes while upsampling point clouds by learning
both global and local features of point clouds.

V. DISCUSSION
Our method and most existed works on 3D reconstruction
reconstruct single objects from images without backgrounds.
Though we can reconstruct 3D models from images of
indoor or outdoor scenes, the backgrounds of images must be
masked as we mentioned in Section IV-F. Zhang et al. [16]
was able to reconstruct 3D models from images of complex
backgrounds by combining features of images and nearest-
shape retrievals from the synthetic dataset. It is a novel trying
and works well for images of complex backgrounds. But
retrievals of nearest-shape are still not exactly the shapes
of input images, which means there might be some native
errors from the beginning of reconstruction. Reconstructing
objects from images of complex backgrounds may be an open
research interest. Training an image segmentation network to
capture main objects from complex backgrounds and feeding
images into the image segmentation network before passing
them into reconstruction network may be a possible solution.

VI. CONCLUSION
We propose an attention-based dense point cloud generation
network which takes a single RGB image as input and gener-
ates a dense point cloud. We introduce an encoder based on
the attention mechanism to point cloud reconstruction task.
We first generate a sparse point cloud from a single image and
then densify it to a dense point cloud through our dense point
cloud generation network. Our evaluation on synthetic and
real-world datasets shows that our approach generates high-
quality dense point clouds from single images and is robust
to handle a new and unseen dataset. In the future, we need
to improve our attention mechanism to fit more categories
of objects. Besides, our approach still predicts some discrete
points around the outlines of generated point clouds, which
may be improved by optimizing the process of point cloud
processing.
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